skip to main content
article

Physically-based simulation of twilight phenomena

Published: 01 October 2005 Publication History

Abstract

We present a physically-based approach to compute the colors of the sky during the twilight period before sunrise and after sunset. The simulation is based on the theory of light scattering by small particles. A realistic atmosphere model is assumed, consisting of air molecules, aerosols, and water. Air density, aerosols, and relative humidity vary with altitude. In addition, the aerosol component varies in composition and particle-size distribution. This allows us to realistically simulate twilight phenomena for a wide range of different climate conditions. Besides considering multiple Rayleigh and Mie scattering, we take into account wavelength-dependent refraction of direct sunlight as well as the shadow of the Earth. Incorporating several optimizations into the radiative transfer simulation, a photo-realistic hemispherical twilight sky is computed in less than two hours on a conventional PC. The resulting radiometric data is useful, for instance, for high-dynamic range environment mapping, outdoor global illumination calculations, mesopic vision research and optical aerosol load probing.

References

[1]
Adams, C. N., Plass, G. N., and Kattawar, G. W. 1974. The influence of ozone and aerosols on the brightness and color of the twilight sky. J. Atmosph. Sci. 31, 6, 1662--1674.
[2]
Anderson, D. 1983. The troposphere-stratosphere radiation field at twilight: A spherical model. Planet. Space Sci. 31, 12, 1517--1523.
[3]
Belikov, Y. 1996. Modelling of the twilight sky brightness using a numerical solution of the radiation transfer equation. J. Atmosph. Terrest. Phys. 58, 16 (Dec.), 1843--1848.
[4]
Bigg, E. 1956. The detection of atmospheric dust and temperature inversions by twilight scattering. J. Meteorol. 13, 3, 266--268.
[5]
Blattner, W., Horak, H., Collins, D., and Wells, M. 1974. Monte-Carlo studies of sky radiation at twilight. Appl. Optics 13, 3, 534--547.
[6]
Bruton, D. 1996. Optical determination of atmospheric temperature profiles. Ph.D. thesis, Texas A&M University.
[7]
Chandrasekhar, S. 1950. Radiative Transfer. Oxford University Press, Oxford, UK.
[8]
Ciddor, P. E. 1996. Refractive index of air: New equations for the visible and near infrared. Appl. Optics 35, 9 (March), 1566--1573.
[9]
CIE-110-1994. 1994. Spatial distribution of daylight-luminance distributions of various reference skies.
[10]
Cohen, M. F., Chen, S. E., Wallace, J. R., and Greenberg, D. P. 1988. A progressive refinement approach to fast radiosity image generation. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '88) J. Dill, Ed. Vol. 22, 75--84.
[11]
Dave, J. V. and Mateer, C. L. 1968. The effect of stratospheric dust on the color of the twilight sky. J. Geophys. Res. 73, 22, 6897--6913.
[12]
Dobashi, Y., Nishita, T., Kaneda, K., and Yamashita, H. 1997. A fast display method of sky colour using basis functions. J. Visualiz. Comput. Animat. 8, 2 (March), 115--127.
[13]
Gruner, P. and Kleinert, H. 1927. Die Dämmerungserscheinungen. Henri Grand, Hamburg, Germany.
[14]
Hall, R. 1989. Illumination and Color in Computer Generated Imagery. Springer-Verlag, New York, NY.
[15]
Heim, A. 1912. Luft-Farben. Hofer & Co. AG Graphische Anstalt, Züürich, Switzerland.
[16]
Hess, M. 1998. OPAC (Optical Properties of Aerosols and Clouds). Available at ftp://ftp.lrz-muenchen.de/pub/science/meteorology/aerosol/opac/index.html.
[17]
Hess, M., Koepke, P., and Schult, I. 1998. Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteorol. Soc. 79, 5 (May), 831--844.
[18]
Irwin, J. 1996. Full-spectral rendering of the earth's atmosphere using a physical model of Raleigh scattering. In Proceedings of the 14th Eurographics UK Conference. 103--115.
[19]
Jackel, D. and Walter, B. 1997. Modeling and rendering of the atmosphere using Mie scattering. Comput. Graph. For. 16, 4, 201--210.
[20]
Jadhav, D. and Londhe, A. 1992. Study of atmospheric aerosol loading using the twilight method. J. Aerosol Sci. 23, 6 (Sept.), 623--630.
[21]
Kajiya, J. T. 1984. Ray tracing volume densities. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '84). Vol. 18. 165--174.
[22]
Kajiya, J. T. 1986. The rendering equation. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '86) 20, 4 (Aug.), 143--150.
[23]
Klassen, R. 1987. Modeling the effect of the atmosphere on light. ACM Trans. Graph. 6, 3 (July), 215--237.
[24]
Kurucz, R. L., Furenlid, I., Brault, J., and Testerman, L. 1984. Solar flux atlas from 296 to 1300 nm. Tech. rep., NOAO, Sunspot, NM. Available at http://kurucz.harvard.edu/sun/fluxatlas/.
[25]
Lilienfeld, P. 2004. A blue sky history. Optics and Photonics News 15, 6 (June), 32--39.
[26]
Linţu, A., Haber, J., and Magnor, M. 2005. Realistic solar disc rendering. In Proceedings of the International Conference on Computer Graphics, Visualization, and Computer Vision (WSCG'05). 79--86.
[27]
Lynch, D. K. and Livingston, W. 2001. Color and Light in Nature. Cambridge University Press, Cambridge, UK.
[28]
Magnor, M., Dorn, P., and Rudolph, W. 2001. Simulation of confocal microscopy through scattering media with and without time gating. J. Optical Soc. Amer. B 18, 11 (Nov.), 1695--1700.
[29]
Max, N. 1994. Efficient light propagation for multiple anisotropic volume scattering. In Proceedings of the 5th Eurographics Workshop on Rendering). Springer-Verlag, 87--104.
[30]
Meeus, J. 1988. Astronomical Formulae for Calculators 4th Ed. Willmann-Bell, Richmond, VA.
[31]
Meeus, J. 1999. Astronomical Algorithms 2nd Ed. Willmann-Bell, Richmond, VA.
[32]
Minnaert, M. 1999. Light and Color in the Outdoors. Springer, Springer-Verlag, New York, NY.
[33]
Nagel, M. R., Quenzel, H., Kwet, W., and Wendling, R. 1978. Daylight Illumination---Color-Contrast Tables for Full-Form Objects. Academic Press, New York, NY.
[34]
Nimeroff, J., Dorsey, J., and Rushmeier, H. 1996. Implementation and analysis of an image-based global illumination framework for animated environments. IEEE Trans. Visual. Comput. Graph. 2, 4 (Dec.), 283--298.
[35]
Nishita, T., Dobashi, Y., Kaneda, K., and Yamashita, H. 1996. Display method of the sky color taking into account multiple scattering. In Proceedings of IEEE Pacific Graphics '96. 117--132.
[36]
Ougolnikov, O. and Maslov, I. 2002. Multicolor polarimetry of the twilight sky: The role of multiple light scattering as a function of wavelength. Cosmic Res. 40, 3 (May), 224--232.
[37]
Preetham, A. J., Shirley, P., and Smits, B. 1999. A practical analytic model for daylight. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH'99). 91--100.
[38]
Royal Meteorological Institute of Belgium. 2002. Available at http://www.meteo.be/ozon/ozone/general.php.
[39]
Rozenberg, G. V. 1966. Twilight: A Study in Atmospheric Optics. Plenum Press, New York, NY.
[40]
Rushmeier, H. and Torrance, K. 1987. The zonal method for calculating light intensities in the presence of a participating medium. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH'87). Vol. 21. 293--302.
[41]
Shah, G. 1970. Study of aerosols in atmosphere by twilight scattering. Tellus 22, 1, 82--93.
[42]
Shirley, P. 1990. Physically based lighting calculations for computer graphics. Ph.D. thesis, Department of Computer Science, University of Illinois, Urbana-Champaign, IL.
[43]
Sloup, J. 2002. A survey of modelling and rendering of the earth's atmosphere. In Proceedings of the 18th Spring Conference on Computer Graphics (SCCG'02). 135--144.
[44]
Stam, J. and Languenou, E. 1996. Ray tracing in non-constant media. In Proceedings of the 7th EG Conference on Rendering Techniques. 225--234.
[45]
Tadamura, K., Nakamae, E., Kaneda, K., Baba, M., Yamashita, H., and Nishita, T. 1993. Modeling of skylight and rendering of outdoor scenes. Comput. Graph. For. 12, 3 (Sept.), C189--C200.
[46]
van de Hulst, H. C. 1982. Light Scattering by Small Particles. Dover Publications, Inc., New York, NY.
[47]
Walker, E. Edward Walker's study in the great plains in the winter around 45°n. Available at http://encyclopedia.thefreedictionary.com/Albedo.
[48]
Wann Jensen, H., Durand, F., Stark, M. M., Premoze, S., Dorsey, J., and Shirley, P. 2001. A physically-based night sky model. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH'01). 399--408.
[49]
Wyszecki, G. and Stiles, W. S. 1982. Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Ed. John Wiley & Sons, New York, NY.

Cited By

View all
  • (2025)A multi-timescale image space model for dynamic cloud illuminationComputers & Graphics10.1016/j.cag.2024.104124126(104124)Online publication date: Feb-2025
  • (2024)Interactive calculation of light refraction and caustics using a graphics processorProgrammirovanie10.31857/S0132347424010086(100-112)Online publication date: 15-Feb-2024
  • (2024)Interactive Calculation of Light Refraction and Caustics Using a Graphics ProcessorProgramming and Computing Software10.1134/S036176882401012250:1(63-72)Online publication date: 1-Feb-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 24, Issue 4
October 2005
244 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1095878
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 October 2005
Published in TOG Volume 24, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 3D radiative transfer equation
  2. Physics-based sky model
  3. multiple scattering
  4. refraction
  5. twilight phenomena

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)42
  • Downloads (Last 6 weeks)2
Reflects downloads up to 13 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)A multi-timescale image space model for dynamic cloud illuminationComputers & Graphics10.1016/j.cag.2024.104124126(104124)Online publication date: Feb-2025
  • (2024)Interactive calculation of light refraction and caustics using a graphics processorProgrammirovanie10.31857/S0132347424010086(100-112)Online publication date: 15-Feb-2024
  • (2024)Interactive Calculation of Light Refraction and Caustics Using a Graphics ProcessorProgramming and Computing Software10.1134/S036176882401012250:1(63-72)Online publication date: 1-Feb-2024
  • (2024)Physically Based Real‐Time Rendering of Atmospheres using Mie TheoryComputer Graphics Forum10.1111/cgf.1501043:2Online publication date: 30-Apr-2024
  • (2024)Light wavelength modulates search behavior performance in zebrafishScientific Reports10.1038/s41598-024-67262-914:1Online publication date: 17-Jul-2024
  • (2023)SkyGAN: Realistic Cloud Imagery for Image‐based LightingComputer Graphics Forum10.1111/cgf.1499043:1Online publication date: 17-Nov-2023
  • (2021)A momentum-conserving implicit material point method for surface tension with contact angles and spatial gradientsACM Transactions on Graphics10.1145/3450626.345987440:4(1-16)Online publication date: 19-Jul-2021
  • (2021)Computing minimal surfaces with differential formsACM Transactions on Graphics10.1145/3450626.345978140:4(1-14)Online publication date: 19-Jul-2021
  • (2021)A fitted radiance and attenuation model for realistic atmospheresACM Transactions on Graphics10.1145/3450626.345975840:4(1-14)Online publication date: 19-Jul-2021
  • (2021)Medial IPCACM Transactions on Graphics10.1145/3450626.345975340:4(1-16)Online publication date: 19-Jul-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media