skip to main content
10.1145/1102351.1102449acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
Article

Object correspondence as a machine learning problem

Authors Info & Claims
Published:07 August 2005Publication History

ABSTRACT

We propose machine learning methods for the estimation of deformation fields that transform two given objects into each other, thereby establishing a dense point to point correspondence. The fields are computed using a modified support vector machine containing a penalty enforcing that points of one object will be mapped to "similar" points on the other one. Our system, which contains little engineering or domain knowledge, delivers state of the art performance. We present application results including close to photorealistic morphs of 3D head models.

References

  1. Allen, B., Curless, B., & Popovic, Z. (2003). The space of human body shapes: reconstruction and parameterization from range scans. SIGGRAPH'03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Audette, M. A., Ferrie, F. P., & Peters, T. M. (2000). An algorithmic overview of surface registration techniques for medical imaging. Medical Image Analysis, 4, 201--217.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bakir, G. H., Gretton, A., Franz, M., & Schöölkopf, B. (2004). Sequential multivariate regression via stiefel manifold constraints. Proc. DAGM.Google ScholarGoogle Scholar
  4. Bartlett, P., & Schöölkopf, B. (2001). Some kernels for structured data (Technical Report). Biowulf Technologies.Google ScholarGoogle Scholar
  5. Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Trans. PAMI, 14, 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Beymer, D., & Poggio, T. (1994). Learning and networks: Applications to graphics and very-low bandwidth video-conferencing. GOMAC. California.Google ScholarGoogle Scholar
  7. Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. SIGGRAPH'99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bregler, C., & Omohundro, S. M. (1995). Nonlinear image interpolation using manifold learning. Advances in Neural Information Processing Systems 7.Google ScholarGoogle Scholar
  9. Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B., & Evans, T. (2001). Reconstruction and representation of 3D objects with radial basis functions. SIGGRAPH'01 (pp. 67--76). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cohen-Or, D., Solomovic, A., & Levin, D. (1998). Three-dimensional distance field metamorphosis. ACM Trans. Graph., 17, 116--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cootes, T. F., Edwards, G. J., & Taylor, C. J. (1998). Active appearance models. ECCV '98: Proceedings of the 5th European Conference on Computer Vision-Volume II (pp. 484--498). Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. Cambridge, UK: Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Freeman, W. T., Jones, T. R., & Pasztor, E. C. (2002). Example-based super-resolution. IEEE Computer Graphics and Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Grochow, K., Martin, S. L., Hertzmann, A., & Popovic, Z. (2004). Style-based inverse kinematics. SIGGRAPH'04. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Haralick, R., & Shapiro, L. (1992). Computer and robot vision, vol. 2. Reading, MA: Addison-Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Micchelli, C., & Pontil, M. (2005). On learning vector-valued functions. Neural Computation, 17, 177--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., & Alexa, M. (2004). Point based animation of elastic, plastic and melting objects. SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Rueckert, D., & Frangi, A. F. (2003). Automatic construction of 3-d statistical deformation models of the brain using nonrigid registration. IEEE Trans. on Medical Imaging, 22, 1014--1025.Google ScholarGoogle ScholarCross RefCross Ref
  19. Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. Proc. Conf. on 3D Digital Imaging and Modeling (pp. 145--152).Google ScholarGoogle ScholarCross RefCross Ref
  20. Saul, L., & Jordan, M. (1997). A variational principle for model-based morphing. Advances in Neural Information Processing Systems 9.Google ScholarGoogle Scholar
  21. Schaback, R. (1995). Creating surfaces from scattered data using radial basis functions. In at M. D. al. (Ed.), Mathematical methods for curves and surfaces. Nashville: Vanderbilt University Press.Google ScholarGoogle Scholar
  22. Schölkopf, B., Giesen, J., & Spalinger, S. (2005). Kernel methods for implicit surface modeling. Advances in Neural Information Processing Systems 17. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar
  23. Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar
  24. Shelton, C. (2000). Morphable surface models. Int. J. of Computer Vision, 38, 75--91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Steinke, F., Schölkopf, B., & Blanz, V. (2005). Support vector machines for 3D shape processing. Computer Graphics Forum (Proc. EUROGRAPHICS), 24.Google ScholarGoogle Scholar
  26. Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.Google ScholarGoogle Scholar
  27. Vetter, T., & Poggio, T. (1997). Linear object classes and image synthesis from a single example image. IEEE Trans. PAMI, 19, 733--742. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wahba, G. (1990). Spline models for observational data, vol. 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics.Google ScholarGoogle Scholar
  29. Walder, C. J., & Lovell, B. C. (2003). Kernel based algebraic curve fitting. Proc. ICAPR'2003.Google ScholarGoogle Scholar
  30. Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., & Vapnik, V. (2003). Kernel dependency estimation. Advances in Neural Information Processing Systems 15.Google ScholarGoogle Scholar
  31. Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., & Müüller, K.-R. (2000). Engineering SVM kernels that recognize translation initiation sites. Bioinformatics, 16, 799--807.Google ScholarGoogle ScholarCross RefCross Ref
  1. Object correspondence as a machine learning problem

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICML '05: Proceedings of the 22nd international conference on Machine learning
      August 2005
      1113 pages
      ISBN:1595931805
      DOI:10.1145/1102351

      Copyright © 2005 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 August 2005

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate140of548submissions,26%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader