Dynamically Configurable Shared CMP Helper Engines for Improved
Performance

Anahita Shayesteh’, Glenn Reinman?, Norman Jouppi£ ,Suleyman Sair¥, Tim Sherwood?

T Computer Science Department, University of California, Los Angeles

¥ Computer Science Department, University of California, Santa Barbara

§ Department of Electrical and Computer Engineering, North Carolina State University
£ HP Labs, Palo Alto

Abstract

Technology scaling trends have forced designers to con-
sider alternatives to deeply pipelining aggressive cores with
large amounts of performance accelerating hardware. One al-
ternative is a small, simple core that can be augmented with
latency tolerant helper engines. As the demands placed on the
processor core varies between applications, and even between
phases of an application, the benefit seen from any set of helper
engines will vary tremendously. If there is a single core, these
auxiliary structures can be turned on and off dynamically to
tune the energy/performance of the machine to the needs of
the running application.

As more of the processor is broken down into helper en-
gines, and as we add more and more cores onto a single chip
which can potentially share helpers, the decisions that are
made about these structures become increasingly important.
In this paper we describe the need for methods that effectively
manage these helper engines. Our counter-based approach
can dynamically turn off 3 helpers on average, while staying
within 2% of the performance when running with all helpers.
In a multicore environment, our intelligent and flexible shar-
ing of helper engines, provides an average 24% speedup over
static sharing in conjoined cores. Furthermore we show bene-
fit from constructively sharing helper engines among multiple
cores running the same application.

1 Introduction and Motivation

While the unceasing march of Moore’s law has given computer
architects a continually increasing number of transistors to de-
sign with, emerging technology trends including poor wire la-
tency scaling, increased power density, and reduced transis-
tor reliability threaten to limit the usefulness of those designs.
One approach to providing aggressive cycle times in the face
of increasing latency is to deeply pipeline all aspects of the
processor, from the branch predictor to the instruction wakeup
logic to the cache memories. While deep pipelining has been
effective at increasing operating frequency, one of the reasons
that performance lags behind that of the trends set by fre-
quency is the increased latency to critical processor loops [2]
from deeply pipelined structures. Furthermore, there is extra

latency from routing complexity due to large structures [19].
Larger structures also contribute to the growing power density
and thermal problems facing modern processor design through
greater power dissipation and longer clock wires [3]. To bat-
tle these problems, modern machines are increasingly built as
a loosely-coupled association of parts that inter-operate in a
robust and latency tolerant manner.

At the highest level, the software may be involved to de-
scribe the loose coupling between various parts of the com-
putation.  Simultaneous Multi-Threading and Chip Multi-
processing based designs [22, 6] have seen widespread adop-
tion both in the academic and industrial environments because,
in part, the parallelism they benefit from can be exploited at
the architectural level. Since the workload is already explic-
itly portioned into parts which communicate infrequently, the
work may be distributed about the die with only minor ef-
fects from the latency of the communication channel between
them. However, even at the micro-architectural level the idea
of decoupled execution has taken hold. Many researchers have
proposed to take the large memory-laden structures that are
crucial to single thread performance, and factor them out of
the core into specialized helper engines [7, 8, 13, 1]. Some
structures can be broken in two, with a smaller structure that
can hold enough state to provide low-latency for requests that
are frequently occurring and a larger, second level, struc-
ture that has a capacity sufficient to keep performance high.
Other structures can be completely factored from the proces-
sor core and have inherent latency tolerance that allows them
to avoid becoming critical loops in the processor. Processors
are quickly becoming distributed systems on a die.

In such an environment, where we have multiple levels
of caches, decoupled branch predictors, separate prefetching
and value prediction units, and two level register files, how
does one manage all of these resources in a way that will pro-
vide adequate performance yet not be wasteful of power and
chip area? The problem is further exacerbated by proposals to
have multiple threads or multiple cores sharing the same re-
sources [11]. Which resources should be shared, how should
they be allocated, and how can we efficiently manage their
power? To answer these questions at run-time, we need a set
of shared helper engine management policies that can adap-
tively allocate resources in a way that takes into consideration



the needs of each executing workload.

In this paper, we present novel shared helper engine man-
agement policies that base their decisions on a set of carefully
chosen observations. We show that through the collection of
a few simple to gather run-time metrics, processor resources
can be allocated to a set of running programs in a way that is
near optimal. We begin by examining a single threaded proces-
sor with a variety of helper engines. Our metrics can predict
which resources will be most valuable to an executing program
so that un-helpful helpers may be put into a low power state yet
the overall performance remains almost unaffected. By gath-
ering a statistic as simple as the number of cache hits, we can
pick the best overall configuration in a single try. Furthermore,
we show how these techniques can be extended to help guide
the sharing of resources between multiple cores on a chip. We
observe how different helpers have different sharing require-
ments and demands, and that prior work may not be able to
find the best sharing combination. We have implemented a
variety of different helper engines and we have extended our
simulator to support multiple executing processes so that a de-
tailed analytic treatment of the subject can be presented.

This paper makes the following contributions:

e Analysis of program behavior and resource require-
ments in an architecture with many major components
decoupled via helper engines.

e Proposal of an intelligent mechanism to dynamically
tune helper engines to the specific needs of the appli-
cation for optimal power/performance.

e Extension of this mechanism to intelligent sharing of re-
sources among multiple cores. Prior work has only con-
sidered whether or not simple sharing is possible — we
demonstrate how different types of helper engines may
be shared differently and how sharing must be flexible
to attain maximal performance.

e Investigation of constructive sharing when the same ap-
plication is allowed to share fetch state across different
phases of execution and different input sets.

The rest of this paper is organized as follows. In Section 2,
prior work on helper engines and CMP sharing is discussed.
Simulation methodology can be found in Section 3. Section 4
begins with a description of the different helper engines that
we implemented and an analysis of the varying requirements
for different applications for different helper engines. We ex-
plore a mechanism to enable/disable helper engines, and fur-
ther extend this to sharing helper engines in a multicore envi-
ronment in Section 5. We conclude in Section 6.

2 Related Work

In [17], Smith proposes a processor implementation that con-
sists of several distributed functional units, each fairly simple

and with a very high frequency clock. These units communi-
cate via point-to-point interconnections that have short trans-
mission delays. He then describes how surrounding this sim-
ple core pipeline with helper engines that perform speculative
tasks off the critical path results in enhanced overall perfor-
mance. Since the helper engines are off the critical path, they
can use slower transistors to reduce static power consumption.
This is also the motivation behind our factored design, where
the speculative structures are reduced to a bare minimum size
to support nearby ILP but they are duplicated in larger sizes
outside of the critical path for extracting distant ILP. On a
follow-up paper [7], Kim and Smith discuss the microarchi-
tecture and ISA that implements this distributed processing
paradigm, which utilizes hierarchical register files and a global
register file to hold global state. In Section 4, we detail the
prior work for each individual helper engine when discussing
the implementation of that helper engine.

Sharing some processor resources among cores in a CMP
setting was first proposed by Dolbeau and Seznec [5]. Kumar
et al. [11] also examine this idea and present a more thorough
evaluation of sharing. Dolbeau and Seznec [5] propose the
CASH architecture as an intermediate design point between
CMP and SMT architectures. A typical CASH architecture
shares caches, branch predictors, and division functional units
between dynamically-scheduled cores. Kumar et al. [11] also
propose resource sharing between adjacent cores of a chip
multiprocessor to reduce die area with minimal impact on per-
formance. They investigate the possible sharing of floating-
point units, crossbar ports, instruction caches, and data caches
and provide detailed analysis of area savings that each kind of
sharing entails. Both [5] and [11] examine a round-robin based
access model where a resource is allocated to a particular core
every cycle. Kumar et al. also investigate a more sophisticated
scheme for caches. After suffering a cache miss, a core relin-
quishes the control of the cache to the other core until the miss
is serviced.

Our work differs from these techniques in two dimensions:
1) In addition to reactive (or demand-based) resource sharing
such as when sharing caches, we also consider sharing always
active resources such as prefetchers and value predictors that
run ahead of the execution stream and, 2) We investigate an
intelligent approach to assigning resources to cores based on
utilization.

3 Methodology

The simulator used in this study was derived from the Sim-
pleScalar/Alpha 3.0 tool set [4], a suite of functional and
timing simulation tools for the Alpha AXP ISA. The timing
simulator executes only user-level instructions. Simulation is
execution-driven, including execution down any speculative
path until the detection of a fault, TLB miss, or branch mispre-
diction. Latency values for the caches and register files were
obtained using CACTI [16] for a 70nm process technology at
4 GHz.



Core

| Helper Engines

Inst Window 256 entry ROB

Physical RF 256 entry register file

BBTB 128-entry 4-way SA 1024-entry 4-way SA

L1 Data 8KB 4-way SA, dual port 64KB 4-way SA, single port
Cache 32B block size, 2 cycle lat 32B block size, 4 cycle lat

L1 Instruction
Cache

4KB 4-way SA, single port
32B block size, 2 cycle lat

64KB 4-way SA, single port
32B block size, 4 cycle lat

Value Predictor none 2K-entry stride
8K-entry L2 markov
Address Predictor none 2K-entry stride
4K-entry markov
Stream Buffer none 32-entry FA buffer
Branch Mispred 15 cycles
Core Width 4-way issue, 4-way decode, 4-way commit
Memory and 152 cycle memory lat, 2MB, 4-way SA unified
L2 Cache cache with a 64B block size and 20 cycle lat

Table 1: Simulation parameters for a single core architecture. These parame-
ters remain the same for the multicore case except for the L2 cache which be-
comes an 4MB, 4-way set-associative, 4-bank cache shared among all cores.

We used the SPEC2000 benchmark set for our experi-
ments. Although the results are gathered for all the bench-
marks, we only show results for a randomly selected subset
of 11 programs in the suite to conserve space in this paper.
Details for all benchmarks will be available as a technical re-
port (citation removed for blind review process). The pro-
grams were compiled on a DEC Alpha AXP-21164 processor
using the DEC C and C++ compilers under OSF/1 V4.0 op-
erating system with full compiler optimization (-04 —-1ifo).
We picked the 4 most dominant phases as determined by the
hardware phase detection technique described in [15] and sim-
ulated these phases as representative samples of the program.
On average, they accounted for approximately 70% of the ex-
ecution time of each benchmark. All benchmarks were simu-
lated using the ref inputs.

Table 1 presents the simulation parameters for the archi-
tecture we explore in this paper. We include an 8K entry
gshare branch predictor in our model. In addition to model-
ing all of the structures and latencies in the architecture, we
have extended SimpleScalar to include a cycle accurate, exe-
cution driven model of chip multiprocessing (CMP) [6]. All
the parameters used in our multicore experiments are the same
as in Table 1 for each core, except that we increase the size of
the L2 cache to an 4MB, 4-way set-associative cache shared
among all cores.

Per-thread performance metrics are measured for execu-
tion up to a maximum per-thread instruction count. All com-
pleted threads continue execution past this point while other
threads execute. This prevents freeing of resources when cer-
tain threads complete earlier than others.

We make use of weighted speedup [18] as a performance
measure. This metric ensures that high IPC threads are not
favored and that we are measuring real increases in the rate
of progress of all applications in the mix. Weighted speedup
equalizes the contribution of each thread to the sum of total
work completed in the interval by dividing the IPC of that job
in the mix by the IPC of a single threaded run.

4 Tuning a Single Core

While there are many different papers that explore the best way
to take a single architectural feature and modify it to strike a
balance between latency and capacity, there is a shortage of
work that examines what the ramifications are when most of
the structures are built in this way. As our goal is to develop
techniques to make good choices between a variety of differ-
ent run-time processor configurations, we need to begin with
a processor model that has been highly decoupled. Figure 1
illustrates the architecture we explore in this study, with many
previously proposed helper engines decoupled from the core
pipeline. In this section we limit ourselves to single core de-
signs, and then in Section 5 we show how to extend the ideas
developed here to apply to cases where multiple cores may
compete for resources.

4.1 Helper Engines

Because there is no existing simulation infrastructure with
built-in decoupled helper engines, we modified our CMP-
extended version of SimpleScalar [4] to include a variety of
proposed designs. The helper engines we include, when com-
bined together, decouple all of the major pieces of the modern
processor, and we believe that they represent a realistic vision
of the next generation of aggressive superscalar designs. This
section includes a description of our target processor core and
the helper engines that assist it.

4.1.1 Data Cache

We consider a small LO cache in our core, as in [8]. Our L1
data cache helper engine extends the cache hierarchy, provid-
ing larger capacity than the LO at a faster latency than our L2.
While data caches are perhaps the most well studied part of
the processor, we will later show the benefits of controlling
the data cache configuration in conjunction with other helper
engines.

4.1.2 Instruction Fetch

Similar to the data cache, we make use of a smaller LO in-
struction cache and an L1 instruction cache helper engine. To
compensate for the smaller cache size, we use out-of-order in-
struction fetch as described in [21]. In this scheme, a place-
holder is used in the instruction fetch queue (IFQ) to maintain
program order - and the execution core stalls if the next entry
to be consumed from the IFQ is still in flight. We model the
complexity this brings to the IFQ by implementing the equiv-
alent of an MSHR [9] for the instruction cache.

4.1.3 Data Prefetch

We model a stream buffer architecture guided by a stride-
filtered markov predictor as proposed in [14]. The stream
buffers of the prefetch helper engine are only accessed on LO
data cache misses. We allow a single prediction and a single



¥
L1 Branch Va!ue
Predictor Predictor
s Rttt ity o vwersegy Rl Rl r=sesorspe
= ocation N tional
| | LO Branch . LO 5 ARtk 1Q unc i
,,,,,,,,,,,,,,,, ‘ 3
L1 | L0 Data
I-Cache (N C-cho
H ¥
L2 Data || L1 Data
Cache Prefetching Cache

i ]

Figure 1: The single core architecture explored in this study.

prefetch per cycle, guided by the address predictor trained on
the LO miss stream.

4.1.4 Value Prediction

Value predictionis one approach to break true data dependen-
cies and create more instruction level parallelism in an appli-
cation. We use a hybrid value predictor [23] to predict load
instructions only. This structure can be accessed early in the
pipeline as we only need the PC of the instruction to make the
prediction. Our value predictor helper engine is limited to two
predictions per cycle. We make use of an extra bit associated
with each instruction in the instruction cache to dynamically
mark instructions for value prediction. In this study, we only
mark instructions that are loads.

4.1.5 Branch Address Prediction

Our architecture makes use of a basic block target buffer
(BBTB) [24], a branch address predictor that predicts an entire
basic block each cycle. The PC at the head of the basic block
serves as an index to the predictor, which returns a target ad-
dress, a fallthrough address, a branch type, and two per-branch
prediction counters: one to make per-branch direction predic-
tions, and one to arbitrate between the per-branch prediction
and the global branch direction prediction.

Our architecture makes use of a small first level BBTB and
a second level BBTB helper engine, similar to [13]. Similarly
we decouple branch prediction from the instruction cache us-
ing a fetch target queue (FTQ) [13]. On a first level BBTB
miss, the BBTB helper engine is probed and fetch stalls until
a response is received from the helper engine. If the helper
engine also misses, we guess a fixed fetch block size and con-
tinue fetching until a misprediction is detected.

4.2 Helper Engine Utilization

While there are many circuit level advantages to decoupling
large structures from the processor core, it also makes it very
easy to tune the processor to the specific needs of an applica-
tion. Each of these engines has a well defined interface, and
the processor can tolerate a wide range of access latencies to
any one of these engines (further explored in Section 5). Thus,

I
I
I
I
_

adding supplemental control to each of these devices that will
allow them to maintain separate power states does not intro-
duce unreasonable cost or performance degradation.

As might be expected, for any given program some helpers
will be more helpful than others. If the program is spending all
of its time doing data accesses, it is more likely to get benefit
from the data cache and prefetcher than the instruction cache.
In a naive design, one might leave all of the helper engines in
an “on” state at all times. Clearly, this will be wasteful if a
program gets no benefit from a subset of the helper engines. In
fact, we have found that up to half of the helper engines can
be turned off at any given point in time, with almost no perfor-
mance impact (2%). The problem is knowing which engines
to turn off.

Note that there is an overhead associated with power gat-
ing, and the coarse-grain organization of these auxiliary struc-
tures into helper engines provides a useful abstraction for
power gating these structures. Moreover, phase-based opti-
mization helps to hide the latency associated with power gat-
ing, since the granularity of our helper allocations is much
larger than the latency of power gating.

To further illustrate this, we plotted the set of critical helper
engines that are needed to maintain top performance for each
program in Figure 2. Figure 2 shows the minimal set of
helpers needed to achieve maximal performance for the top
four phases of 11 of the programs we have examined (shown
in the rows). The columns of the table represent the helper
engines, (d=data cache, p=prefetching, b=branch prediction,
i=instruction cache, and v=value prediction). An X in a given
square indicates for that phase, the corresponding helper en-
gine should be turned “on”. Helpers without X’s can be dis-
abled without affecting performance. We refer to setting the
helper engines “on” or “off” as the configuration of the helpers
in one of two power states.

All of the configurations in Figure 2 perform within 5% of
the configuration shown to have the absolute highest perfor-
mance (typically the configuration with all helper engines ac-
tive). The last two columns present the speed up of this config-
uration relative to best and worst configurations (all helpers on,
and all helpers off). These configurations were found strictly
by a brute force search of the design space, simulating every
possible configuration and taking the configuration with the
least number of helper engines “on” that was still within 5%
of the case with all helper engines turned on.

Obviously, trying each of the 2™ possible configurations is
not a viable design choice for a runtime system, but there are
several important points that can be drawn from this graph. It
is clear from Figure 2 that there is no one good configuration
that fits all applications. For many programs different config-
urations are even needed for different phases. This means a
new, intelligent, and adaptive management scheme is going to
be needed.



d p b i v |SU/all |SU/none
applu 1 X -4% 9%
2 -2% 0%
3 X -4% 20%
4 X X 0% 19%
apsi 1 X X -3% 40%
2 0% 2%
3 -4% 0%
4 -4% 0%
art 1 X X 0% 16%
2 X -4% 8%
3 X -4% 7%
4 X -4% 8%
bzip2 1 X X 0% 23%
2 X -2% 8%
3 X X 0% 23%
4 X X -3% 10%
crafty 1 X X X -4% 174%
2 | X X X -3% 138%
31X X X -2% 192%
4 | X X X -4% 156%
eon 1 X X X -2% 125%
2 X X X -1% 110%
31X X X -2% 107%
4 | X X X -1% 105%

4.3 Helper Configuration

Helper engine configuration could be tackled in a variety of
different ways. While static approaches could use profile or
compiler guided heuristics to find one good configuration for
the application as a whole, this may prove ineffective due to the
time varying behavior of applications. A more effective static
approach may be to inject special reconfiguration instructions
that help tune the processor to specific phases. While these
techniques are possible, in this paper we choose to focus on
hardware based dynamic techniques as they require no a priori
knowledge of the program and operate in a completely on-line
manner.

To guide our decision about which configuration to choose,
we need some information on how a program interacts with
the processor. This information must be simple and cheap to
obtain, and should be highly indicative of the benefits the pro-
gram is reaping from access to each helper engine. In order to
gather this information, we use simple performance counters
that track the “help” that each engine provides. For example,
performance counters can track the number of hits in cache
helper engines, successful predictions by predictor helper en-
gines, and so forth. Specifically, our helper engines are modi-
fied to track the following events:

Data/Instruction Cache: the number of times a cache line
that missed in the LO data/instruction cache hits in the
data/instruction cache helper engine.

BBTB: the number of times a PC that missed in the LO BBTB
hits in the BBTB helper engine.

Data Prefetcher: the total number of hits in the stream
buffers and in the L2 cache that were brought in by the

d| p b i v |\SU/all |S U /none

galgel 1 -4% 0%
2 -1% 0%

3 -1% 0%

4 -3% 0%

gap 1 X| X | X -3% 174%
2 X X -4% 40%

3 X X -4% 36%

4 X X 0% 85%

mcf 1 X X -1% 985%
2 X -2% 15%

3 X -3% 407%

4 X -2% 10%

mesa 1 X| X | X -1% 109%
2 X| X [X -1% 94%

3 X | X [X -1% 101%

4 X| X |[X 1% 102%

parser 1 X X X -2% 29%
2 X X X -1% 24%

31X X -4% 17%

41X X X 1% 18%

Figure 2: Optimal helper configurations for top executed phases of bench-
marks

prefetcher. Each line in the L2 cache is augmented with
a bit to indicate whether it was brought in by a demand
miss or a prefetch. On the first use of a line marked as a
prefetch, the bit is flipped.

Value Prediction: the number of instructions issued using a
predicted value.

These counter values are compared to pre-determined
threshold values to decide whether the helper engine should
be turned on or off. We performed a sensitivity analysis to
various threshold values for the SPEC 2000 benchmark suite
with reference inputs. We show results for a conservative set
of thresholds to curtail performance degradation. More ag-
gressive thresholds can be used when power reduction is the
primary objective. Furthermore, dynamic threshold values can
be calculated by adjusting the thresholds to maintain certain
“on” and “off” state performance counter standard deviation
values. However, this is beyond the scope of this paper, and
we leave this for future work.

We make use of phase-based memoization [15] to track
the helper engine configuration per application phase. A small
hardware structure tracks a bit vector per phase for all the
helpers in the architecture. If the bit at a particular location
is set, the helper represented by that particular location should
be on. Otherwise the helper can be turned off. The first time a
phase is seen, we turn all helpers on and track the performance
using the above counters. Each counter is compared against
the threshold for keeping the helper engine on, and the bit
vector for that particular phase is updated in our phase-based
memoization table. The helper engines can then be guided by
a simple last phase predictor. The sampling period need not
be as long as a phase, and can be limited to an interval of one
million cycles.



08

B 06

N

g 0.4

s 0.2
0

applu  apsi art bzip crafty eon galgel gap mcf mesa parser

Figure 3: Comparison of the configuration from Figure 2 (light grey) and our
counter guided configuration (dark grey).

We also memoize the observed IPC for each phase during
the sampling period, and if the IPC resulting from a particu-
lar configuration is not within some threshold IPC seen during
sampling (5% for this study), we clear the bit vector for that
phase and force another sampling of the above counters. This
helps recover from phase mispredictions or events that can im-
pact performance (such as power throttling).

4.4 Performance of Counter-Guided Configuration

Figure 3 compares the performance of the configuration from
Figure 2 (light grey) to our counter-guided configuration. Per-
formance here is normalized to an architecture running with
all helper engines on. On average, we are able to come within
1.5% of that performance with an average of only 2.6 helpers
turned on. The configuration from Figure 2 comes within 2%
of the performance of all helpers on, only using 2.2 helpers on
average. In some cases, we use one more helper engine than
needed due to our choice of conservative thresholds. More of-
ten than not this is the data cache helper engine, which can
provide load hits that are not performance critical. One ap-
proach to fine tuning this further would be to incorporate the
notion of load criticality [20] or to try and correlate this with
the number of L2 misses — applications with a large number of
L2 misses may not see benefit from an increase in L1 hits if
the L2 misses that dominate the critical path of the application
are not reduced.

These results demonstrate the ability of performance coun-
ters to fine tune helper engine utilization. This can allow an
architecture to reduce power wasted in helper engines that do
not provide useful work or as we will see in the next section,
to coordinate sharing among cores using a common pool of
helper engines.

5 Management Across Cores

As demonstrated in Section 4, resource demand varies signif-
icantly across different applications and even across different
phases of the same application. In the case of a single core,
this fact can be exploited to reduce power by finding a con-
figuration that still provides good performance but with a bare
minimum of helper engines left in a high power state. Manag-
ing helper engines when multiple cores are involved presents
a tougher challenge. While the easiest approach to supporting
multiple cores on a chip would be to give each one its own
set of helper engines, previous work has shown that this in-
stills unnecessary area complexity without a significant per-

# of Active Helpers

15 [Se0000ue,,, Soay,

MM

Average IPC

dcache icache bbtb prefetch vp
latency of helper (1:25)

Figure 4: Impact of Latency on Our Helper Engines

formance benefit [5, 11]. The alternative that we also explore
in this paper is the use of a common pool of helpers, shared
among all the cores. Sharing has a number of benefits such as
reducing the area spent to implement redundant functionality
and the potential of optimization through dynamic resource al-
location. In this section, we present techniques to effectively
manage helper engines in a multicore environment.

5.1 Design Decisions

There are a large number of design decisions to be made in
examining helper engines in a multicore setting: the number
of cores, the number of each type of helper engine, the topol-
ogy of the interconnect between cores and helper engines, the
physical layout of cores and helpers, and the application mix
to execute on the cores. This is an enormous design space, and
it is simply not manageable to try all possible combinations.
To get a set of experiments which is tractable, we limit our
search in this paper by considering results for two possible ma-
chine organizations: four cores sharing a single helper engine
of each type and four cores sharing two helper engines of each
type. Additionally, we consider applications that are not coop-
erative, but our work could certainly be applied to cooperative
multithreading. We assume that all cores share a common sec-
ond level cache, and that any core may connect to any helper
engine.

One question that immediately comes to mind when we
propose that any core may connect to any helper engine is that
it is going to take a good deal longer to communicate with a
helper engine on the other side of the chip than with one in
close physical proximity to the core. While this is true when
partitioning arbitrary processor resources, helper engines have
an inherent advantage due to their higher latency tolerance.

To demonstrate that helper engines are naturally latency
tolerant, we present Figure 4 which plots the performance im-
pact of latency on our various helper engines by varying the
access latency from 1-25 cycles. For these results, we con-
sider a single core with private helpers, and average the IPC
observed over benchmarks that use the helper from table 2. As
seen from the figure, for most helpers, there is little impact on
performance of these helpers from smaller latencies — the most
is seen by the branch target buffer (BBTB) helper, which suf-
fers an IPC degradation around 1% for each additional cycle
of latency. Prefetching sees the least impact, less than a 0.01%
drop in IPC for each additional cycle of latency. The prefetcher
hides the latency of memory, and even 25 cycles is tolerable



when compared with this latency. The remaining helpers see
less than 0.5% degradation per cycle for each additional cy-
cles. As the latency increases above 10 cycles, its impact on
the performance of the helper increases non-linearly.

Our architecture is also not impacted by nonuniform access
latency from different cores to a common helper. The arbiter
that selects what requests from a core should be serviced by
a helper would be located close to the helper itself. There-
fore, if core A sees a two cycle latency to a helper and core B
sees a single cycle latency to a helper, and if core A pipelines
its requests over two cycles, then the helper will simply see a
stream of requests from A and B without any notion of hetero-
geneous latency. A will see its predictions a cycle later than B
will see its predictions, but as we have demonstrated, this has
a negigible impact on performance.

Our multicore architecture and its floorplan are shown in
Figure 5. We use CACTI to estimate the size and dimensions
of the L2 cache and all of our helpers. The area of our core was
calculated using the area of EV6 and EVS5 scaled to a 70nm
feature size, similar to [10].

Our flexible sharing requires a link from each core to each
helper. This would double the number of interconnections
compared to a conjoined architecture where each helper is stat-
ically shared between two cores. We used a similar method of
crossbar area estimation as [11]. For our choice of helpers
and their respective bandwidth requirements, the crossbar area
occupies 10% of the total area of the processor, which is 5%
more than conjoined cores.

The other hidden cost in sharing helpers is the potential
increase in requests for each resource, making helper engine
bandwidth a serious concern. Ideally, each core would have its
own dedicated port to each helper engine, but the cost would
be prohibitive. Instead, a helper can make use of port arbi-
tration to satisfy multiple core requests. One possibility is al-
lowing cores to take turns accessing a helper. Another would
involve more sophisticated control hardware that would arbi-
trate among several requests, much like what is done with a
unified second level cache.

In an architecture where cores share a common pool of
helpers, the helpers can either be exclusively assigned to a core
(i.e. partition the helpers), shared among several cores (i.e.
sharing common helpers), or some combination of both (i.e.
some of the cores sharing a common helper). Partitioning is
useful when the bandwidth or internal storage demands placed
on a helper by a single core would preclude benign sharing
with other cores. In that case, the most favorable option would
be dedicating a helper to a single core. Sharing can be useful
when individual cores do not consume all of the bandwidth or
storage space of a given helper.

5.1.1 Always On vs. On Demand Sharing

Different helper engines exhibit different tolerances to shar-
ing. At a high level, helpers can be divided into those that
are accessed on-demand and those that are always active. On-
demand helpers include those that are hierarchical extensions

Microcore Microcore
D12 DI2
a || a
ill vp dll vp il || di1
DI2 DI12
Microcore Microcore

Figure 5: Our Multicore die floorplan, with 2 set of helpers in the middle of
the cluster, and microcores and L2 cache banks distributed around the outside.

of core structures, like the instruction cache, data cache, and
branch predictor. These helpers are only accessed when their
corresponding core structure misses. Locality in the corre-
sponding core structures filters the majority of the requests ob-
viating frequent accesses to these helpers. This means that
bandwidth to the helper may more easily be shared among
multiple cores. However, the amount of state contained in the
helper may still be insufficient to allow effective sharing be-
tween cores — but bandwidth is not usually a limiting factor.

Other helpers do not have corresponding core structures,
and are therefore not on-demand. The value prediction and
prefetching helpers are examples of this class of helper en-
gines. Any load instruction can be value predicted and any
cache miss can initiate a prefetch stream, but a helper may
not have enough bandwidth to handle competing requests from
multiple cores if there are lots of loads or cache misses. Helper
state is also a problem here, as sharing cores would need
to contend with one another for value and address predictor
space.

5.1.2 Simple vs. Counter Guided Sharing

One simple approach to sharing is to have conjoined cores take
turns accessing a common set of helper engines. Taking turns
is a viable option for on-demand helpers where contention for
helper bandwidth is less common. But helpers that are not
on-demand can suffer from a turn-based approach. Consider
value prediction in a two core setting, where each cycle a new
set of load PCs are fetched and could potentially be value pre-
dicted. Taking turns would mean that value prediction would
only occur every other cycle, potentially halving the number
of value predicted instructions. Note that the issue here is not
access latency (because helper engines are latency tolerant),
but the fact that we lose the opportunity to predict load in-
structions. This problem only becomes worse when trying to
share among more than two cores. We further optimize the



turn-based strategy by allowing other cores to access a helper
engine on a given core’s turn if that core does not require the
helper’s bandwidth. This can happen when a core has suffered
a pipeline flush or in the case of on-demand helpers that simply
do not see any accesses to the helper.

Even though some cores may make use of a helper, the
helper may not provide any benefit, even in the case of on-
demand helpers. Consider a thread whose working set does
not fit in the data cache helper engine — it will thrash in the
data cache as it tries to contain its working set, but will still
be plagued by misses that must be serviced by the L2 and will
evict potentially useful entries from other threads. Similarly, a
thread may not see any benefit from value prediction and may
simply be stealing available bandwidth from a thread that does
see benefit.

We make use of the utilization counters from Section 4 to
guide helper engine sharing. These counters provide a filtering
mechanism to avoid sharing a helper among cores that see no
benefit from that helper. Cores can then request access from a
global helper arbiter to the helpers from which they expect to
see benefit.

While filtering useless sharing is vital, we also need to pro-
vide an intelligent approach to choose what cores will share a
common helper engine. In a four core scenario where all cores
(labeled A-D) want a BBTB helper engine, and there are only
two helpers available, performance may substantially improve
if A and B are allowed to share instead of A and C. Or, it may
be best for A to have its own private helper and for B-D to
share the remaining helper.

To arbitrate sharing among the filtered set of helper en-
gines, we make use of correlating counters that can guide shar-
ing. A good example of this is the prefetching helper engine.
If multiple cores are contending for a pool of prefetch helper
engines, threads that have a greater magnitude of prefetches
should be given private access to a prefetcher if one is avail-
able. If there are not enough prefetchers to grant a private en-
gine to threads with a large number of prefetches, threads with
a comparable number of prefetches should be paired together.
This prevents threads with a greater number of prefetches from
starving other threads from getting access to stream buffers.

At each core, the correlating counters are tested against a
number of thresholds to classify the demand for a particular
helper into a utilization class (i.e. light, medium, heavy). The
utilization class is then memoized in the phase-detection hard-
ware to track the expected utilization class of each helper at
each phase.

The global helper arbiter is responsible for taking the re-
quests from all cores for helpers (this has already been filtered
at each core by the performance counters and phase-detection
mechanisms) and the actual utilization class for each helper re-
quested from each core. The global arbiter then tries to match
requests of similar utilization classes together in the case of
helpers that are not on-demand and tries to mix requests in the
case of helpers that are on-demand.

Dallprivate O thelper Daverage BEworst Wbest M 2helper

0d OO0 -

crafty.eon.apsi.gap  apsi.gap.mesa.art bzip2.mcf.crafty.eon  mesa.art.applu.galgel applu.galgel.bzip2.mcf
0/4 need helper

4/4 need helper 3/4 need helper 2/4 need helper 1/4 need helper

Figure 6: Simple vs Counter-Guided Sharing of the BBTB Helper Engine

5.2 Sharing Results

To better evaluate the difference between the two types of
helper engines and the two types of sharing, we more closely
examine the BBTB helper engine (an on-demand helper) and
the prefetcher helper engine (not on-demand). For each, we
examine situations where four cores have private versions of
all other helper engines but either the BBTB or the prefetcher.
The four cores are then forced to share either one or two in-
stances of either the BBTB or the prefetcher. For the results in
this section, an architecture where four cores are sharing a sin-
gle instance of a helper is denoted with a -7/ and an architec-
ture where four cores are sharing two helper engines is denoted
with a -2h. We consider conjoined sharing (conjoined) and
counter guided sharing (counter), as well as the case where all
cores have their own private engines (private). Four conjoined
cores can share one helper in only one way (all four sharing
the one helper), but four cores can be conjoined to share two
helpers in three ways: core A and B together, core A and C
together, or core A and D together. To capture the variation in
performance possible depending on how cores are conjoined,
we consider three bars for conjoined cores: best-conjoined (the
best case combination of cores), worst-conjoined (the worst
case combination of cores), and avg-conjoined (the average
performance across all combinations). Note that there is no
one combination that is always best or worst - the best and
worst cases vary dramatically from helper to helper and from
application to application.

For each helper that we explore, we construct an appli-
cation mix by selecting five benchmarks that benefited from
the helper engine and five benchmarks that did not benefit
from the helper engine. We then form five application mixes
of four threads each that represent all possible combinations:
all threads need the helper, three out of four threads need the
helper, two out of four threads need the helper, only one thread
needs the helper and no thread needs the helper — in that order.
For cases where only one or no application demands a helper
engine, there is obviously little impact from these sharing ap-
proaches — but these results are shown for completeness.

Our helper configurations are as presented in Section 3.
The value predictor helper engine has only two ports, and can
therefore only satisfy two requests for prediction per cycle.
The prefetcher can only prefetch one cache line per cycle.

Figure 6 illustrates the performance of an on-demand
helper: the BBTB helper engine. For the single helper runs,
there is not much improvement from counter-guided sharing



Dallprivate O1helper Daverage Eworst Mbest M 2helper DOallprivate O1helper Daverage BEworst Mbest W 2helper
60 100
80 +
-
2?0 5 60 |
2 3
o
2 2 40
2 20 7]
) ES
0 o — 0l
applu.equake bzip2.mefbzip2.mcf.mgrid.apsi mesa.pser.applu.equak mgrid.apsi.craftgon crafty.eon.mesa.paer arteon apsi.crafty galgelgap  apsi.eon craftymgrid  gap.perl mgrid.galgel
4/4 need helper 3/4 need helper 2/4 need helper /4 need helper  0/4 need helper gaigel.gap arteon mesamcf  parserperl  mcf.gap apsivortox  bzip2.mef

Figure 7: Simple vs Counter-Guided Sharing of the Prefetching Helper Engine

because on-demand sharing already inherently filters requests
(counter based-1 helper). Intelligent sharing in this case would
be beneficial if it can eliminate useless accesses to the helper
engine. On-demand helpers naturally will not be accessed if
there is no benefit. However, when sharing two helpers among
four cores, there is a destructive relationship between eon and
crafty when sharing a common BBTB due to aliasing. Our
counter-guided approach is able to determine the best combi-
nation for benign sharing — even when all four applications
want to share the BBTB. Because eon and crafty see many
more helper engine BBTB hits than other applications, they
should not be combined together to avoid contention for space
in the BBTB. The gap in performance between having a single
BBTB helper and having two BBTB helpers is clearly greater
when more applications demand the BBTB, demonstrating the
impact that contention for space can have, even for on-demand
helpers. The last two mixes of benchmarks, where only one or
no application needs the BBTB, do not see any impact from
sharing approaches.

Figure 7 illustrates the performance of a helper that is not
on-demand: the prefetch helper engine. Counter-guided shar-
ing is useful for the single helper run when there are two or
three benchmarks competing for bandwidth that do not see any
benefit from the helper. The benchmark mix mesa-parser—
applu-equakeis such a case, where mesa and parser do
not benefit from prefetching but applu and equake do. By
filtering mesa and parser out via our correlation counters,
we are able to use a single helper engine to outperform the
worst and average cases of conjoined cores with two helpers.

With two helpers, there is more disparity between differ-
ent conjoined core runs. Applu and mcf issue far more
prefetches than bzip2 and equake, and unlike the case of
on-demand helpers, it is actually beneficial here to have ap—
plu and mcf share the same helper engine. If we com-
bine either one of these applications with one that benefits
from prefetching but does not have the same magnitude of
prefetches (like bzip2 or equake), the application with less
prefetches will not get a fair share of stream buffer resources.
In the case of mesa-parser—-applu-equake, parser
contends for prefetch bandwidth, despite not seeing a benefit
from prefetching, and impedes the prefetching of applu or
equake. The counter-guided approach is able to identify the
inability of parser to effectively use prefetching, and pre-
vents this degradation. For all runs, our counter-guided ap-
proach is able to perform as well or better than the best con-
joined core combination.

Figure 8: Simple vs Counter-Guided Sharing of All Helper Engines

Figure 8 presents results for sharing all helpers at once.
The first application mix on the figure enjoys a large improve-
ment from our counter-guided approach for two main reasons.
First, gap is able to get a private value predictor. Second,
art and eon do not do well when conjoined with galgel.
By giving flexibility to helpers in how they share, our approach
is able to outperform any conjoined combination. This is also
evident from the third benchmark mix, where value predic-
tion contention hampers the performance of mcf and gap.
On average our counter-guided approach for one set of helpers
sees 13% improvement over a baseline naively sharing helpers
among all cores. Sharing two set of helpers, our approach pro-
vides 54% improvement while conjoining cores can see ben-
efit ranging from 20% to 40% depending on how cores are
conjoined.

5.2.1 Constructive Sharing

As we demonstrated in the previous section, sharing one helper
among four cores, can degrade performance significantly when
applications running on all cores need the helper. However,
there are cases where common code or data (i.e. OLTP, paral-
lel processing) may be executing in the CMP environment, and
sharing can actually be constructive if threads are allowed to
share state in a common helper engine. Our flexible helper
management allows constructive sharing of a helper among
such workloads. We consider the case where the same appli-
cation is executing on all cores, but each application instance
is executing different input sets or different phases of the same
input set.

Figure 9 illustrates the benefit of constructive sharing for
the BBTB and instruction cache helpers. For crafty, eon
and mesa we simulated four different phases of each appli-
cation running concurrently on four cores. For vortex we
used four different inputs. All of these application use both
BBTB and instruction cache helpers intensively. The first bar
shows results when there are private helpers dedicated to each
core, and the second bar shows results when only one helper is
shared constructively among the four cores. The speedup pre-
sented is relative to one helper shared among four cores, but
without any constructive sharing among threads. Our counter
mechanism is still used in this case. Our results indicate that
sharing the instruction cache between multiple cores incurs a
similar miss rate as a dedicated cache per core with the same
capacity, as reported in [12]. In vortex, a constructively



DOallprivate Wconstructive sharing BBTB

Dallprivate M constructive sharing IL1 ‘

I

s S04

° o

3 Q

o 2 @

& 02
0 0

crafty eon mesa vortex crafty eon mesa  vortex

Figure 9: Speedup of private helpers, and constructively shared helpers rela-
tive to the performance of sharing helpers destructively

shared instruction cache even outperforms the private cache
performance by avoiding misses to cache blocks used by mul-
tiple cores. The contention when sharing the BBTB among
applications that have high demand for this helper can be ex-
tremely severe when not shared constructively. Crafty and
vortex see a4X speedup when using dedicated BBTB helper
engines instead of sharing a single BBTB helper. This is due to
the reduced accuracy of branch prediction when threads thrash
for space in the shared predictor. There is a significant increase
in the number of instructions executed as a result of this mis-
peculation which can further pollute caches and waste energy.
Sharing the BBTB constructively among cores eliminates this
thrashing effect for all applications simulated except crafty
which still sees some impact from this. This application has
more complex branch behavior that can inhibit constructive
sharing across different phases.

6 Summary

In this paper we explore helper engine management policies,
both for a single core and in a multicore environment. Cores
with decoupled helper engines provide an opportunity to dy-
namically tune processor resources on an application phase
basis. With our counter-guided helper management, we can
come within 2% of the best performing helper engine config-
uration (typically the one with all five helper engines active),
but with an average of less than three helpers turned on. This
counter-guided scheme can be applied to the multicore envi-
ronment to more effectively share a pool of common helper
engines among a number of cores. Our approach to sharing
is intelligent and flexible enough when used with four cores
sharing two sets of helpers to see an average 54% weighted
speedup over a baseline naively sharing only one set of helpers.
Statically shared helpers can see benefit ranging from an aver-
age of 20% to 40% depending on how cores are shared. Con-
structive sharing can provide even more benefit, effectively
providing performance comparable to private helper engines
when running the same application on all cores, even for dif-
ferent inputs and phases.

References

[1] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Reducing the
complexity of the register file in dynamic superscalar processors. In
Proceedings of the 34th Annual International Symposium on Microar-
chitecture, December 2001.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

E. Borch, E. Tune, S. Manne, and J. Emer. Loose loops sink
chips. In Proceedings of the Eighth International Symposium on High-
Performance Computer Architecture, 2002.

D. Brooks, P. Cook, P. Bose, S. Schuster, H. Jacobson, P. Kudva,
A. Buyuktosunoglu, J. Wellman, V. Zyuban, and M. Gupta. Power-aware
microarchitecture: Design and modeling challenges for next-generation
microprocessors. In IEEE Micro, November 2000.

D. C. Burger and T. M. Austin. The simplescalar tool set, version
2.0. Technical Report CS-TR-97-1342, U. of Wisconsin, Madison, June
1997.

R. Dolbeau and A. Seznec. Cash: Revisiting hardware sharing in single-
chip parallel processor. Technical Report IRISA Report 1491, IRISA,
November 2002.

L. Hammond, B. A. Nayfeh, and K. Olukotun. A single-chip multipro-
cessor. IEEE Computer, 30, 1997.

H-S. Kim and J. E. Smith. An instruction set and microarchitecture
for instruction level distributed processing. In Proceedings of the 29th
annual international symposium on Computer architecture, pages 71—
81, June 2002.

J. Kin, M. Gupta, and W. Mangione-Smith. The filter cache:an energy
efficient memory structure. In IEEE International Symposium on Mi-
croarchitecture, December 1997.

D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In
8th Annual International Symposium of Computer Architecture, pages
81-87, May 1981.

R. Kumar, N. Jouppi, P. Ranganathan, and D. Tullsen. Single-isa het-
erogeneous multi-core architectures: The potential for processor power
reduction. In 36th International Symposium on Microarchitecture, De-
cember 2003.

R. Kumar, N. Jouppi, and D. Tullsen. Conjoined-core chip multiprocess-
ing. In 37th International Symposium on Microarchitecture, December
2004.

Partha Kundu, Murali Annavaram, Trung Diep, and John Shen. A
case for shared instruction cache on chip multiprocessors running oltp.
SIGARCH Comput. Archit. News, 32(3):11-18, 2004.

G. Reinman, T. Austin, and B. Calder. A scalable front-end architecture
for fast instruction delivery. In 26th Annual International Symposium on
Computer Architecture, May 1999.

T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream buffers.
In 33rd International Symposium on Microarchitecture, December 2000.
T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In
30th Annual International Symposium on Computer Architecture, June
2003.

P. Shivakumar and Norman P. Jouppi. Cacti 3.0: An integrated cache
timing, power, and area model. In Technical Report, 2001.

J. E. Smith. Instruction-level distributed processing. IEEE Computer,
34(4):59-65, April 2001.

A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simulta-
neous multithreading processor. In In Ninth International Conference
on Architectural Support for Programming Languages and Operating
Systems, November 2000.

E. Sprangle and D. Carmean. Increasing processor performance by im-
plementing deeper pipelines. In 29th Annual International Symposium
on Computer Architecture, 2002.

S. Srinivasan, R. Ju, A. R. Lebeck, and C. Wilkerson. Locality vs. criti-
cality. In 28th Annual International Symposium on Computer Architec-
ture, June 2001.

J. Stark, P. Racunas, and Y. N. Patt. Reducing the performance impact
of instruction cache misses by writing instructions into the reservation
stations out-of-order. In 30th International Symposium on Microarchi-
tecture, pages 34—43, December 1997.

Dean Tullsen, Susan Eggers, and Henry Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. In Proceedings of the 22rd
Annual International Symposium on Computer Architecture (ISCA),
June 1995.

K. Wang and M. Franklin. Highly accurate data value prediction using
hybrid predictors. In 30th Annual International Symposium on Microar-
chitecture, pages 281-290, December 1997.

T. Yeh and Y. Patt. A comprehensive instruction fetch mechanism for a
processor supporting speculative execution. In Proceedings of the 25th
Annual International Symposium on Microarchitecture, pages 129-139,
December 1992.



