
A Novel Approach for Digital Waveform Compression
�

Edwin Naroska Shanq-Jang Ruan Chia-Lin Ho
Computer Engineering Institute Department of Electrical Engineering Department of Computer Science

University of Dortmund, Germany National Taiwan University, Taiwan and Information Engineering
edwin@ds.e-technik.uni-dortmund.de stj@orchid.ee.ntu.edu.tw National Taiwan University, Taiwan

hcl@orchid.ee.ntu.edu.tw

Said Mchaalia Feipei Lai Uwe Schwiegelshohn
Computer Engineering Institute Department of Computer Science Computer Engineering Institute

University of Dortmund, Germany and Information Engineering University of Dortmund, Germany
said@ds.e-technik.uni-dortmund.de and Department of Electrical Engineering uwe.schwiegelshohn@udo.edu

National Taiwan University, Taiwan
flai@cc.ee.ntu.edu.tw

The waveform data, which is gathered during digital simula-
tion of large and complex systems easily fill up huge amounts of
disk space on the simulation computer. This is specially true for
many deep-submicron designs. Hence, we developed a set of algo-
rithms and techniques which can be used to efficiently compress
digital waveforms without losing any significant information from
the original data. Experimental results show that compression ra-
tios of up to 300 compared to a original VCD formatted file can
be achieved.

I. INTRODUCTION

Verification has become one of the most important and time
consuming part in the design cycle of digital systems. The
most common functional verification method is simulation.
During simulation, a set of test vectors are applied to the circuit
and huge waveform files are generated. Hence, fast compres-
sion techniques to reduce the file size of the waveform database
without sacrificing simulation speed are indispensable.

Despite waveform compression being a challenging prob-
lem, only few work is known to the authors. In [1], the authors
remove those signals from the watch list that can be easily re-
built. However, this approach is mainly dedicated to gate level
models. In contrast to [1], our techniques can be applied on
each kind of model. Moreover, our approach can be applied
on top of the technique from [1] to further improve compres-
sion ratio. There are commercial tools that support dumping
compressed waveform files [2]. However, their algorithms are
not disclosed. Alternatively, common compression algorithms
may be used to decrease the file size of a waveform database
[3, 8, 4]. Although these algorithms are well known and may
be optimized for waveform compression, they usually con-
sume a significant amount of computation power and do not
provide sufficient compression ratios.

Our approach exploits typical waveform properties to
achieve good compression ratio with less computation power.�

This work has been sponsored by Novas Software, Inc. Patent pending.

First, we separate the waveform stream into two sub-streams
signal-id stream and value stream. The signal-id stream stores
for each (simulated) time instance the signals that are having a
transition. Value stream contains the actual signal values after
a corresponding transition. To compress the signal-id stream,
we make use of a caching like technique that identifies simi-
lar signal activity behavior in an efficient manner. For value
stream compression, we apply a set of techniques, which pre-
dict a new signal value based on previously recored history
information. Afterwards, the compressed streams are encoded
and merged to form a combined waveform stream again. For
further size reduction, the combined output streams may be
additionally processed using common compression programs.

II. VCD FILE FORMAT

VCD is a widely used ASCII based file format developed by
Cadence to store signal waveforms [9]. In a VCD file transi-
tions are grouped into (so called) transition blocks. Each tran-
sition block starts with a new (simulated) time value followed
by a list of signal/value pairs defining the transitions at that
specific time instance.

Definition 1 Let
�������
	��
�����
���
���
���������

be the set of signals.
Then, a transition is a tuple ��� ������� �"!$#

.
���

is an integer
number which uniquely identifies the signal

�
the transition

belongs to.
!

is the value of signal
�

after the transition took
place. Function

���%� ��� # returns the signal identifier of ��� .
Definition 2 A transition block is a tuple &%')(+*-,�. �/�102� & # ,
where � � � �-354�� &%')(6*7,�. # is the transition time, 8 �
8 � &%')(*7,�. #9�:�;07<2=>��0-<2?>��@
@�@A�

is a set of transitions. B is a
unique integer number denoted as simulation cycle. It is ob-
tained by enumerating the transition blocks. A signal

�
must

not be associated with more than a single transition of 8 , i.e.C ����D � ����EGFH8 �JILK�NMPOQ��� � ����D #PK�R��� � ����E # .

Definition 3 Let &%')(*7,�. be a transition block at simula-
tion cycle B . Then, the transition signal block

� *�� . is the set
of signal identifiers that are associated with a transition in
8 � &%')(6*7,�. # . I.e.,

� *�� . � ��� �%� ��� # O ��� F 8 � &%')(6*7,�. # �;@

III. SIGNAL ID COMPRESSION

Experiments on RTL level designs as well as gate (timing)
level designs showed that in many cases for a particular tran-
sition signal block

� *�� . an identical block
� * � . with ��� B can

be found. Note that this only means that the same signals are
having a transition at both cycles while the new values of the
corresponding signals will usually differ. Moreover, it turned
out that a small group of the signal sets occur frequently while
some other appear only once. To exploit this property, we do
signal ID compression using a so called transition block cache
& (�� . This cache stores all different kind of transition signal
blocks that are detected during compression (i.e., there are no
identical blocks in the cache). In order to refer to a cache entry,
each entry is associated with a unique cache entry identifier

�
.

As a result, a transition block at cycle
�

is processed as fol-
lows: First,

� *��A. is determined and looked up in the transition
block cache & (�� . If

� *	� . is already in the cache (namely,
cache hit) then the unique cache entry identifier associated with� *	� . is determined. Otherwise (namely, cache miss), a new en-
try

� *	�A. is added to & (�� and associates with a new unique
identifier. Next, the cache entry identifier is stored to the out-
put stream. Further, In case of a cache miss, the signal set is
also written to the output stream (see Section A).

We applied this technique on 5 RTL level models and 3 gate
(timing) level models. The two worst hit ratios (= how many of
the transition blocks could be matched against an appropriate
block in the transition block cache) were 84% and 89%, while
all other ratios were above 94%.

A. Signal set encoding

In case of a &%(
� miss, the transition signal block
� *��A. must

be encoded and written to the output stream along with the as-
sociated cache entry identifier. As the identifier occupies only
a couple of bytes it is not further encoded. The signal iden-
tifiers of

� *	� . are dumped in increasing identifier number or-
der. However, only the first identifier is directly saved while
for the following identifier the increment to the corresponding
preceding identifier are dumped. To save space, we applied the
rather simple and fast variable length encoding technique from
[10] instead of using complex algorithms like Huffman encod-
ing [5], arithmetic encoding [6] or dictionary based (Lempel-
Ziv) techniques [3, 4]. Variable length encoding translates a 32
bit integer value into a sequence of 1 to 5 bytes. Each output
byte contains a payload of 7 bits and a stop bit that determines
whether an additional byte is needed to encode the number. A
major advantage of this approach is its low runtime overhead.

�
E.g., the simulation cycle at which the corresponding entry was added to

the cache may be used as cache entry identifier

Further, because the output stream remains byte oriented, dic-
tionary based techniques can be subsequently applied.

IV. VALUE COMPRESSION

Similar to signal set encoding, the signal values are encoded
for each transition block separately. First, the bits defined in
the VCD file must be mapped to binary values. The VCD for-
mat defines bit values 0, 1, x and z which are mapped to binary
bit patterns 00, 01, 10 and 11.

Dumping the signal values of a transition block & 'P(+*7,�. is
done as follows: The transition set 8 � &%')(6*7,�. # is sorted in
increasing

� �
-value order of the transitions. Next, all signal

values of the transition set are written to a temporary stream
according to the sorted order. To save space, the value bits are
converted to corresponding binary bits and seamlessly packed
together. Finally, the temporary stream is split up into sections
of 32 bits which are variable length encoded (see Section III)
and afterwards written to the output.

Efficient variable length encoding requires that the upper
bits of the numbers to be encoded are mostly 0. However, this
pre-condition is often not matched by the packed value stream.
This issue is addressed in the following.

A. Shuffling

Usually, the signal values are 0 or 1 during simulation most
of the time while values x or z seldom appear. As a result, the
odd bits in the packed value stream are usually 0. To exploit
this property, we split the stream into words (sections) of 32
bits and re-arrange the bits within each word so that all even
bits go into the lower 16 bit part and the odd bits are moved
to the upper part of the word. Hence, the upper part of the
shuffled words will be 0 most of the time enabling efficient
variable length encoding compression.

We also extended this approach to handle 64 bit wide words
by grouping the value stream into sections of 64 bits, separat-
ing even and odd bits within each 64 bit word and applying 64
bit wise variable length encoding.

B. Value prediction

Value prediction has been successfully applied on image
compression [7] and is also used in processor research [11].
Our approach is similar as it tries to determine signal values
based on previously observed transitions. Instead of storing
the actual signal values, the difference (xor) between predicted
values and the actual signal values of a transition block are
dumped. Thus, the number of 0 bits in the dumped stream are
increased, which in turn can be exploited by further encoding
techniques (e.g., by variable length encoding).

B.1 Signal history based prediction

Often, only a few bits of a vector signal change at a time.
Hence, instead of storing the new value the difference (xor)
of the current and the previous value may be dumped. This

of course requires that for each signal its previous value is
recorded in a so called history buffer.

Although this feature can reduce the number of bits set in
the value stream, there are some downsides: It does not work
well for single (VCD) bit signals transitions because for each
such transition at least one of the corresponding binary bits
changes. Further, a significant amount of memory is occupied
by the history buffer. Finally, storing the current values into
the history buffer pollutes the data cache of the processor due
to the random like access pattern.

B.2 Extended signal history based prediction

Fortunately, based on the previous signal value the next value
of a single (VCD) bit signal can be usually predicted very eas-
ily. Usually, x and z seldom appear on any signals. Hence,
if the previous value of a (single bit) signal is 0 then the next
value will most probably become 1 and vice versa. For previ-
ous values x or z we arbitrarily chose 0 as prediction.

For vector signals we selected a simple schema which as-
sumes that the least significant bit of a vector is flipping while
all other bits remain stable. However, if a previous vector bit
is x or z then we predict the next value to be 0.

B.3 Signal set history based prediction

Although extended signal history based prediction is capable
of predicting signal values more accurately than the approach
described in Section B.1, it also suffers from the additional
memory overhead and data cache pollution. To overcome this
drawback, we developed an approach which stores history data
into the transition block cache & (�� introduced in Section III.

Definition 4 A transition data block is a triple &%'�� (+*7,�. �
�102� & ��� # , where B , � and 8 are defined as in Definition 2 and�

is a packed data array section consisting of all signal values
listed in 8 .

The modified transition block cache & (���� consists of
&%'�� (6*7,�. entries. The signals values of a transition block at
cycle

�
are now processed as follows: The signal value stream

is xor-ed with the data section stored in the corresponding tran-
sition data block and the number of bits set to 1 in the result are
counted (population count). If the population count is above a
specific threshold then the original value section is variable
length encoded and written to the value output stream. The
value data is prepended by a special token to indicate that orig-
inal values are written. Otherwise, another token is written to
the output stream followed by the variable length encoded xor
result. Finally, the value data is written back to the correspond-
ing cache entry of the & (�� � .

Contrary to the approach from Section B.2, there may be
more than one “previous” signal value stored for a signal
(stored in different & (�� � entries). However, signal values are
stored in packed array format reducing memory consumption
significantly. Further, processor data cache read/write opera-
tions with respect to the signal values are more regular because

the & (
� � value arrays are always read and written sequen-
tially.

B.4 Hybrid history based prediction

The hybrid history based prediction approach uses a history
table to hold the previous value for each signal as well as cor-
responding value arrays for each &%(
��� cache entry. However,
the value arrays in the & (
� � cache are now used to hold the
difference between the predicted and the real values for a cor-
responding transition block.

In detail, signals values of a transition block at cycle
�

are
processed as follows:
� The previous values obtained from the history table are

used to determine a set of predicted values for the current
cycle. The predicted values are packed together to build
a predicted value stream, which is xor-ed with the real
signal values to form a predicted value difference stream.

� The predicted value difference stream is xor-ed with the
value data section of the corresponding & (���� cache en-
try. Depending on which population count is lower, ei-
ther this result or the predicted value difference stream
is dumped to the output stream. In each case the data is
prepended with a special token to indicate which of the
two data sets were written.

� The predicted value difference stream is stored back to the
corresponding & (���� cache entry and the current signal
values are stored back into the history table.

V. EXPERIMENTAL RESULTS

We implemented 10 compression programs that take a VCD
file and output a compressed file. The programs are named:
plain, sh, lsh, lsh hist, lsh hist pred, xor, xor sh, xor lsh,
xor lsh hist and xor lsh hist pred. All versions applied sig-
nal id compression (Section III). Program plain did not use
any other additional technique presented in this paper while the
features of the other programs are encoded in their names: “sh”
= 32 bit shuffling (Section A), “lsh” = 64 bit shuffling (Sec-
tion A), “hist” = signal based history (Section B.1), “pred” =
value prediction (Section B.2) and “xor” = signal set based his-
tory (Section B.3). Note that xor lsh hist and xor lsh hist pred
are hybrid history based prediction approaches (Section B.4):
xor lsh hist uses signal prediction based on Section B.1 while
xor lsh hist pred uses the approach from Section B.2.

In order to test the compression programs, we applied them
on a set of VCD files. Table I shows the compression ratio
with respect to the original VCD file size. In order to en-
hance size reduction, we also applied common compression
programs UNIX compress (column “compr.”) as well as bzip2
with option “-9” (highest compression) on the output files. The
overall compression results are shown in the corresponding
columns. Obviously, using xor lsh hist pred gives best com-
pression results for RTL models and lsh hist pred is best suited
to gate level models.

TABLE I
COMPRESSION RESULTS FOR VARIOUS MODELS AND PROGRAM CONFIGURATIONS

model
rtl (RTL level model) sxp2 (RTL level model) gate (gate level model) sota (gate level model)

program no LZ compr. bzip2 no LZ compr. bzip2 no LZ compr. bzip2 no LZ compr. bzip2

plain 7.1 14.8 84.4 4.1 18.6 56.1 12.4 20.2 46.9 7.0 19.8 67.1
sh 11.3 21.0 145.2 5.2 20.9 55.1 17.5 21.9 60.6 7.1 19.8 67.3
lsh 12.0 21.8 157.0 5.6 22.1 55.7 18.6 21.5 62.1 7.1 19.8 66.7

lsh hist 11.7 20.6 150.4 4.9 23.1 81.1 18.1 58.7 106.2 6.8 19.5 67.7
lsh hist pred 12.0 22.0 154.5 6.1 28.0 86.9 34.5 69.3 116.6 7.6 23.0 83.3

xor 19.1 106.3 308.2 7.3 51.1 193.3 25.3 54.7 97.5 7.1 18.0 60.8
xor sh 20.6 113.6 315.6 7.8 54.3 189.3 26.0 54.4 99.2 7.1 18.0 60.7
xor lsh 29.8 114.2 311.3 11.1 61.4 197.3 30.9 55.0 99.0 7.2 18.2 60.9

xor lsh hist 29.8 113.8 311.7 11.3 64.1 207.9 30.9 59.2 111.2 7.1 18.1 61.6
xor lsh hist pred 29.9 115.6 317.9 11.7 68.1 215.4 31.9 60.2 112.6 7.2 19.8 71.6

TABLE II
COMPRESSION RATIO (RELATED TO ORIGINAL FILE SIZE) AND SPEEDUP (COMPARED TO RUNTIME OF “BZIP2”)

bzip2 compress xor lsh hist pred xor lsh hist pred xor lsh hist pred
+ bzip2 + compress

model ratio speedup ratio speedup ratio speedup ratio speedup ratio speedup

rtl 5.0 1 3.5 5.4 29.9 12.6 317.9 9.5 115.6 11.9
sxp2 27.1 1 6.3 5.9 11.7 9.0 215.4 5.8 68.1 8.3
leon 22.3 1 6.8 5.3 9.5 10.7 26.6 4.6 18.2 8.7
gate 2.3 1 1.8 5.0 31.9 9.9 112.6 2.9 60.2 9.5
sota 4.0 1 2.2 4.9 7.2 5.7 71.6 4.5 19.9 4.9

We also compared the performance of our algorithm
xor lsh hist pred with UNIX programs “compress” and
“bzip2”. Table II shows the compression ratio as well as the
speedup compared to the runtime of “bzip2”. Note that the last
two columns show the results obtained from applying “com-
press” and “bzip2” on the output of xor lsh hist pred. The ta-
ble clearly shows the excellent performance of our algorithms.

VI. CONCLUSION

In this paper, we developed a set of algorithms to compress
digital waveforms. In order to efficiently process the data, we
separate the waveform stream into signal ID stream and value
stream and apply appropriate algorithms to both stream types.
For the signal IDs, we developed a technique which is based
on identifying identical signal sets. The value stream was com-
pressed by predicting signal values based on previously gath-
ered transition information.

Our experimental results show that compression ratios of up
to 300 can be achieved. Compared to using “bzip2” only, our
approach combined with “bzip2” achieves better compression
ratios (up to 63 times) while consuming less runtime (up to 9
times faster).

REFERENCES

[1] J. Marantz, “Enhanced Visibility and Performance in Functional Verifi-
cation by Reconstruction”, in Proceedings DAC-98, June 1998

[2] Novas Software Inc., “Debussy: Total Debug System”,
http://www.novas.com.tw/products/index.html, 2002/04/11

[3] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Com-
pression”, IEEE Transaction on Information Theory, Vol. IT-23, No. 3,
May 1977

[4] Dzung T. Hoang, Philip M. Long and Jeffrey Scott Vitter, “Dictionary
Selection Using Partial Matching”, Information Sciences, Vol. 119, No.
1–2, 57–72, 1999

[5] J.S. Vitter, “Design and Analysis of Dynamic Huffman Codes”, Journal
of ACM, 34(4):825–845, October 1987

[6] J.J. Rissanen and G.G. Langdon, “Arithmetic Coding”, IBM Journal of
Research and Development, 23(2): 149–162, March 1979

[7] X. Wu and N.D. Memon, “CALIC – A Context Based Adaptive Lossless
Image Coding Scheme”, IEEE Transaction on Communications, 45:437–
444, May 1996

[8] G. Mandyam, N. Ahmed and N. Magotra, “A DCT-Based Scheme for
Lossless Image Compression”, IS&T/SPIE Electronic Imaging Confer-
ence, February 1995

[9] Cadence Design Systems Inc., “Verilog-XL Reference Manual”, Version
2.3, 1995

[10] Wireless Application Protocol Forum Ltd., “Wireless Application Proto-
col, Wireless Session Protocol Specification”, WAP WSP Standard, Ver-
sion 5-November-1999

[11] Bohuslav Rychlik, John Faistl, Bryon Krug and John P. Shen, “Efficancy
and Performance Impact of Value Prediction”, in Proceedings PACT-98,
October 1998

[12] Marius Evers, Po-Yung Chang and Yale N. Patt, “Using Hybrid Branch
Predictors to Improve Branch Prediction Accuracy in the Presence of
Context Switches”, in Proceedings ISCA, 1996

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

