skip to main content
10.1145/1134030.1134042acmotherconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
Article

Analysis of protein-protein interaction networks using random walks

Published:21 August 2005Publication History

ABSTRACT

Genome wide protein networks have become reality in recent years due to high throughput methods for detecting protein interactions. Recent studies show that a networked representation of proteins provides a more accurate model of biological systems and processes compared to conventional pair-wise analyses. Complementary to the availability of protein networks, various graph analysis techniques have been proposed to mine these networks for pathway discovery, function assignment, and prediction of complex membership. In this paper, we propose using random walks on graphs for the complex/pathway membership problem. We evaluate the proposed technique on three different probabilistic yeast networks using a benchmark dataset of 27 complexes from the MIPS complex catalog database and 10 pathways from the KEGG pathway database. Furthermore, we compare the proposed technique to two other existing techniques both in terms of accuracy and running time performance, thus addressing the scalability issue of such analysis techniques for the first time. Our experiments show that the random walk technique achieves similar or better accuracy with more than 1,000 times speed-up compared to the best competing technique.

References

  1. S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth. Predicting protein complex membership using probabilistic network reliability. Genome Research, 14:1170--1175, May 2004.Google ScholarGoogle ScholarCross RefCross Ref
  2. G. D. Bader and C. W. V. Hogue. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4(2), 2003.Google ScholarGoogle Scholar
  3. J. S. Bader. Greedily building protein networks with confidence. Bioinformatics, 19(15):1869--1874, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  4. P. M. Bowers, M. Pellegrini, M. J. Thompson, J. Fierro, T. O. Yeates, and D. Eisenberg. Prolinks: a database of protein functional linkages derived from coevolution. Genome Biology, 5(5):R35, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  5. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30:107--117, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick, A. M. Michon, and C. M. Cruciat. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415:141--147, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  7. Y. Ho, A. Gruhler, A. Heilbut, G. D. Bader, L. Moore, S. L. Adams, A. Millar, P. Taylor, K. Bennett, and K. Boutilier. Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature, 415:180--183, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  8. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci., 98:4569--4574, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  9. R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J. Krogan, S. Chung, A. Emili, M. Snyder, J. F. Greenblatt, and M. Gerstein. A bayesian networks approach for predicting protein-protein interactions from genomic data. Science, 302:449--453, October 2003.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Kanehisa, S. Goto, S. Kawashima, and A. Nakaya. The KEGG databases at GenomeNet. Nucleic Acids Research, 30:42--46, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  11. G. R. G. Lanckriet, M. Deng, N. Cristianini, M. I. Jordan, and W. S. Noble. Kernel-based data fusion and its application to protein function prediction in yeast. In Proceedings of PSB, 2004.Google ScholarGoogle Scholar
  12. I. Lee, S. V. Date, A. T. Adai, and E. M. Marcotte. A probabilistic functional network of yeast genes. Science, 306:1555--1558, November 2004.Google ScholarGoogle ScholarCross RefCross Ref
  13. S. Letovsky and S. Kasif. Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics, 19:i197--i204, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  14. L. Lovasz. Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty, 2:353--398, 1996.Google ScholarGoogle Scholar
  15. H. W. Mewes, C. Amid, R. Arnold, D. Frishman, U. Guldener, G. Mannhaupt, M. Munsterkotter, P. Pagel, N. Strack, V. Stumpflen, J. Warfsmann, and A. Ruepp. MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Research, 32:D41--D44, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  16. B. Schoelkopf, K. Tsuda, and J.-P. Vert, editors. Kernel methods in computational biology. MIT Press, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. Scott, T. Ideker, R. M. Karp, and R. Sharan. Efficient algorithms for detecting signaling pathways in protein interaction networks. In Proceedings of RECOMB, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. K. Tsuda and W. S. Noble. Learning kernels from biological networks by maximizing entropy. Bioinformatics, 20(S1):i326--i333, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. Uetz, G. Cagney, T. A. Mansfield, R. Judson, J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, and P. Pochart. A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature, 403:623--627, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  20. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput, 8:410--421, 1979.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. C. von Mering, L. J. Jensen, B. Snel, S. D. Hooper, M. Krupp, M. Foglierini, N. Jouffre, M. A. Huynen, and P. Bork. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Research, 33:D433--D437, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  22. C. von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields, and P. Bork. Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 417:399--403, May 2002.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. Weston, A. Elisseeff, D. Zhou, C. S. Leslie, and W. S. Noble. Protein ranking: From local to global structure in the protein similarity network. Proc. Nat. Acad. Sci., 101(17):6569--6563, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  24. Y. Yamanishi, J.-P. Vert, and M. Kanehisa. Protein network inference from multiple genomic data: a supervised approach. Bioinformatics, 20(S1):i363--i370, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Analysis of protein-protein interaction networks using random walks

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          BIOKDD '05: Proceedings of the 5th international workshop on Bioinformatics
          August 2005
          79 pages
          ISBN:1595932135
          DOI:10.1145/1134030

          Copyright © 2005 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 August 2005

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          Overall Acceptance Rate7of16submissions,44%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader