skip to main content
article

A planar-reflective symmetry transform for 3D shapes

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

Symmetry is an important cue for many applications, including object alignment, recognition, and segmentation. In this paper, we describe a planar reflective symmetry transform (PRST) that captures a continuous measure of the reflectional symmetry of a shape with respect to all possible planes. This transform combines and extends previous work that has focused on global symmetries with respect to the center of mass in 3D meshes and local symmetries with respect to points in 2D images. We provide an efficient Monte Carlo sampling algorithm for computing the transform for surfaces and show that it is stable under common transformations. We also provide an iterative refinement algorithm to find local maxima of the transform precisely. We use the transform to define two new geometric properties, center of symmetry and principal symmetry axes, and show that they are useful for aligning objects in a canonical coordinate system. Finally, we demonstrate that the symmetry transform is useful for several applications in computer graphics, including shape matching, segmentation of meshes into parts, and automatic viewpoint selection.

Skip Supplemental Material Section

Supplemental Material

p549-podolak-high.mov

mov

29.2 MB

p549-podolak-low.mov

mov

11.2 MB

References

  1. Abbasi, S., and Mokhtarian, F. 2000. Automatic view selection in multi-view object recognition. In Proc. ICPR, vol. 1, 1013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Atallah, M. 1985. On symmetry detection. IEEE Trans. on Computers 34, 663--666.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Besl, P. J., and Mckay, N. D. 1992. A method for registration of 3-D shapes. IEEE Trans. PAMI 14, 2, 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bigun, J. 1997. Pattern recognition in images by symmetries and coordinate transformations. Computer Vision and Image Understanding 68, 3, 290--307. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Blanz, V., Tarr, M., Buelthoff, H., and Vetter, T. 1999. What object attributes determine canonical views. Perception 28.Google ScholarGoogle Scholar
  6. Blum, H. 1967. A transformation for extracting new descriptors of shape. In Models for the Perception of Speech and Visual Form, MIT Press, W. Whaten-Dunn, Ed., 362--380.Google ScholarGoogle Scholar
  7. Bonneh, Y., Reisfeld, D., and Yeshurun, Y. 1994. Quantification of local symmetry: application to texture discrimination. Spatial Vision 8, 4, 515--530.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chazelle, B., Dobkin, D. P., Shouraboura, N., and Tal, A. 1995. Strategies for polyhedral surface decomposition: an experimental study. In SCG '95: Proceedings of the eleventh annual symposium on Computational geometry, ACM Press, New York, NY, USA, 297--305. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chetverikov, D. 1995. Pattern orientation and texture symmetry. Computer Analysis of Images and Patterns 970, 222--229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Choi, I., and Chien, S. 2004. A generalized symmetry transform with selective attention capability for specific corner angles. IEEE Signal Processing Letters 11, 2 (Feb.), 255--257.Google ScholarGoogle ScholarCross RefCross Ref
  11. Di Gesù, V., Valenti, C., and Strinati, L. 1997. Local operators to detect regions of interest. Pattern Recognition Letters 18, 11--13 (Nov.), 1088--1081. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Duda, R., Hart, P., and Stork, D. 2001. Pattern Classification, Second Edition. John Wiley & Sons, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ferguson, R. W. 2000. Modeling orientation effects in symmetry detection: The role of visual structure. In Proc. Conf. Cognitive Science Society.Google ScholarGoogle Scholar
  14. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., and Jacobs, D. 2003. A search engine for 3D models. ACM Trans. Graph. 22, 1, 83--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Garland, M., Willmott, A., and Heckbert, P. S. 2001. Hierarchical face clustering on polygonal surfaces. In SI3D '01: Proceedings of the 2001 Symposium on Interactive 3D graphics, ACM Press, New York, NY, USA, 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kamada, T., and Kawai, S. 1988. A simple method for computing general position in displaying three-dimensional objects. Comput. Vision Graph. Image Process. 41, 1, 43--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. Proceedings of ACM SIGGRAPH 22, 3, 954--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., and Rusinkiewicz, S. 2003. A reflective symmetry descriptor for 3D models. Algorithmica 38, 1 (Oct.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2003. Rotation invariant spherical harmonic representation of 3D shape descriptors. In Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Symmetry descriptors and 3D shape matching. In Proc. Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kelly, M. F., and Levine, M. D. 1995. Annular symmetry operators: A method for locating and describing objects. In Proc. ICCV, 1016--1021. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lee, J., Moghaddam, B., Pfister, H., and Machiraju, R. 2004. Finding optimal views for 3d face shape modeling. In FGR, IEEE Computer Society, 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lee, C. H., Varshney, A., and Jacobs, D. W. 2005. Mesh saliency. Proceedings of ACM SIGGRAPH 24, 3, 659--666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Li, X., Toon, T., Tan, T., and Huang, Z. 2001. Decomposing polygon meshes for interactive applications. In Proceedings of the 2001 Symposium on Interactive 3D graphics, 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Loy, G., and Zelinsky, A. 2002. A fast radial symmetry transform for detecting points of interest. In Proc. ECCV, 358--368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mangan, A. P., and Whitaker, R. T. 1999. Partitioning 3d surface meshes using watershed segmentation. IEEE Transactions on Visualization and Computer Graphics 5, 4, 308--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Manmatha, R., and Sawhney, H. 1997. Finding symmetry in intensity images. Tech. Rep. UM-CS-1997-007, University of Massachusetts, Jan. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Martinet, A., Soler, C., Holzschuch, N., and Sillion, F. 2005. Accurately detecting symmetries of 3D shapes. Tech. Rep. RR-5692, INRIA, September.Google ScholarGoogle Scholar
  29. Minovic, P., Ishikawa, S., and Kato, K. 1993. Symmetry identification of a 3D object represented by octree. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 5 (May), 507--514. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Reisfeld, D., and Yeshurun, Y. 1992. Robust detection of facial features by generalized symmetry. In Proc. ICPR, 117.Google ScholarGoogle Scholar
  31. Reisfeld, D., Wolfson, H., and Yeshurun, Y. 1995. Context-free attentional operators: The generalized symmetry transform. IJCV 14, 2, 119--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Shah, M. I., and Sorensen, D. C. 2005. A symmetry preserving singular value decomposition. SIAM Journal of Matrix Analysis and it's Application (October).Google ScholarGoogle Scholar
  33. Shan, Y., Matei, B., Sawhney, H. S., Kumar, R., Huber, D., and Hebert, M. 2004. Linear model hashing and batch ransac for rapid and accurate object recognition. IEEE International Conference on Computer Vision and Pattern Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. 2004. The Princeton Shape Benchmark. In Proc. Shape Modeling International. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sun, C., and Sherrah, J. 1997. 3D symmetry detection using the extended Gaussian image. IEEE Transactions on Pattern Analysis and Machine Intelligence 2, 2 (February), 164--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Thrun, S., and Wegbreit, B. 2005. Shape from symmetry. In Proceedings of the International Conference on Computer Vision (ICCV), IEEE, Bejing, China. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Vázquez, P.-P., Feixas, M., Sbert, M., and Heidrich, W. 2001. Viewpoint selection using viewpoint entropy. In VMV '01: Proceedings of the Vision Modeling and Visualization Conference 2001, Aka GmbH, 273--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wolter, J. D., Woo, T. C., and Volz, R. A. 1985. Optimal algorithms for symmetry detection in two and three dimensions. The Visual Computer 1, 37--48.Google ScholarGoogle ScholarCross RefCross Ref
  39. Zabrodsky, H., Peleg, S., and Avnir, D. 1993. Completion of occluded shapes using symmetry. In Proc. CVPR, 678--679.Google ScholarGoogle Scholar
  40. Zabrodsky, H., Peleg, S., and Avnir, D. 1995. Symmetry as a continuous feature. Trans. PAMI 17, 12, 1154--1166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zhang, J., and Huebner, K. 2002. Using symmetry as a feature in panoramic images for mobile robot applications. In Proc. Robotik, vol. 1679 of VDI-Berichte, 263--268.Google ScholarGoogle Scholar

Index Terms

  1. A planar-reflective symmetry transform for 3D shapes

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 25, Issue 3
                July 2006
                742 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/1141911
                Issue’s Table of Contents

                Copyright © 2006 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 1 July 2006
                Published in tog Volume 25, Issue 3

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader