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Abstract— We propose ι, a novel index for evaluation of point-
distribution. ι is the minimum distance between each pair of
points normalized by the average distance between each pair of
points. We find that a set of points that achieve a maximum value
of ι result in a honeycomb structure. We propose that ι can serve
as a good index to evaluate the distribution of the points, which
can be employed in coverage-related problems in wireless sensor
networks (WSNs). To validate this idea, we formulate a general
sensor-grouping problem for WSNs and provide a general sensing
model. We show that locally maximizing ι at sensor nodes is a
good approach to solve this problem with an algorithm called
Maximizing-ι Node-Deduction (MIND). Simulation results verify
that MIND outperforms a greedy algorithm that exploits sensor-
redundancy we design. This demonstrates a good application of
employing ι in coverage-related problems for WSNs.

I. INTRODUCTION

A wireless sensor network (WSN) consists of a large
number of in-situ battery-powered sensor nodes. A WSN can
collect the data about physical phenomena of interest [1].
There are many potential applications of WSNs, including
environmental monitoring and surveillance, etc. [1][2].

In many application scenarios, WSNs are employed to
conduct surveillance tasks in adverse, or even worse, in
hostile working environments. One major problem caused is
that sensor nodes are subjected to failures. Therefore, fault
tolerance of a WSN is critical.

One way to achieve fault tolerance is that a WSN should
contain a large number of redundant nodes in order to tolerate
node failures. It is vital to provide a mechanism that redundant
nodes can be working in sleeping mode (i.e., major power-
consuming units such as the transceiver of a redundant sensor
node can be shut off) to save energy, and thus to prolong the
network lifetime. Redundancy should be exploited as much as
possible for the set of sensors that are currently taking charge
in the surveillance work of the network area [3].

We find that the minimum distance between each pair of
points normalized by the average distance between each pair of
points serves as a good index to evaluate the distribution of the
points. We call this index, denoted by ι, the normalized mini-
mum distance. If points are moveable, we find that maximizing
ι results in a honeycomb structure. The honeycomb structure
poses that the coverage efficiency is the best if each point
represents a sensor node that is providing surveillance work.
Employing ι in coverage-related problems is thus deemed
promising.

This enlightens us that maximizing ι is a good approach
to select a set of sensors that are currently taking charge in
the surveillance work of the network area. To explore the
effectiveness of employing ι in coverage-related problems,
we formulate a sensor-grouping problem for high-redundancy
WSNs. An algorithm called Maximizing-ι Node-Deduction
(MIND) is proposed in which redundant sensor nodes are
removed to obtain a large ι for each set of sensors that
are currently taking charge in the surveillance work of the
network area. We also introduce another greedy solution
called Incremental Coverage Quality Algorithm (ICQA) for
this problem, which serves as a benchmark to evaluate MIND.

The main contribution of this paper is twofold. First, we in-
troduce a novel index ι for evaluation of point-distribution. We
show that maximizing ι of a WSN results in low redundancy of
the network. Second, we formulate a general sensor-grouping
problem for WSNs and provide a general sensing model. With
the MIND algorithm we show that locally maximizing ι among
each sensor node and its neighbors is a good approach to
solve this problem. This demonstrates a good application of
employing ι in coverage-related problems.

The rest of the paper is organized as follows. In Section
II, we introduce our point-distribution index ι. We survey
related work and formulate a sensor-grouping problem to-
gether with a general sensing model in Section III. Section
IV investigates the application of ι in this grouping problem.
We propose MIND for this problem and introduce ICQA as a
benchmark. In Section V, we present our simulation results in
which MIND and ICQA are compared. Section VI provides
conclusion remarks.

II. THE NORMALIZED MINIMUM DISTANCE ι: A
POINT-DISTRIBUTION INDEX

Suppose there are n points in a Euclidean space Ω. The
coordinates of these points are denoted by xi (i = 1, ..., n).

It may be necessary to evaluate how the distribution of these
points is. There are many metrics to achieve this goal. For
example, the Mean Square Error from these points to their
mean value can be employed to calculate how these points
deviate from their mean (i.e., their central). In resource-sharing
evaluation, the Global Fairness Index (GFI) is often employed
to measure how even the resource distributes among these
points [4], when xi represents the amount of resource that
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belong to point i. In WSNs, GFI is usually used to calculate
how even the remaining energy of sensor nodes is.

When n is larger than 2 and the points do not all overlap
(That points all overlap means xi = xj , ∀ i, j = 1, 2, ..., n).
We propose a novel index called the normalized minimum
distance, namely ι, to evaluate the distribution of the points. ι
is the minimum distance between each pair of points normal-
ized by the average distance between each pair of points. It is
calculated by:

ι =
min(||xi − xj ||)

µ
(∀ i, j = 1, 2, ..., n; and i 6= j) (1)

where ||xi−xj || denotes the Euclidean distance between point
i and point j in Ω, the min(·) function calculates the minimum
distance between each pair of points, and µ is the average
distance between each pair of points, which is:

µ =
(
∑n

i=1

∑n
j=1,j 6=i ||xi − xj ||)
n(n− 1)

(2)

ι measures how well the points separate from one another.
Obviously, ι is in interval [0, 1]. ι is equal to 1 if and only
if n is equal to 3 and these three points forms an equilateral
triangle. ι is equal to zero if any two points overlap. ι is a
very interesting value of a set of points. If we consider each
xi (∀i = 1, ..., n) is a variable in Ω, how these n points would
look like if ι is maximized?

An algorithm is implemented to generate the topology in
which ι is locally maximized (The algorithm can be found
in [5]). We consider a 2-dimensional space. We select n =
10, 20, 30, ..., 100 and perform this algorithm. In order to
avoid that the algorithm converge to local optimum, we select
different random seeds to generate the initial points for 1000
time and obtain the best one that results in the largest ι
when the algorithm converges. Figure 1 demonstrates what
the resulting topology looks like when n = 20 as an example.
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Fig. 1. Node Number = 20, ι = 0.435376

Suppose each point represents a sensor node. If the sensor
coverage model is the Boolean coverage model [6][7][8][9]
and the coverage radius of each node is the same. It is exciting
to see that this topology results in lowest redundancy because
the Vonoroi diagram [10] formed by these nodes (A Vonoroi
diagram formed by a set of nodes partitions a space into
a set of convex polygons such that points inside a polygon
are closest to only one particular node) is a honeycomb-like
structure1.

1This is how base stations of a wireless cellular network are deployed and
why such a network is called a cellular one.

This enlightens us that ι may be employed to solve problems
related to sensor-coverage of an area. In WSNs, it is desirable
that the active sensor nodes that are performing surveillance
task should separate from one another. Under the constraint
that the sensing area should be covered, the more each node
separates from the others, the less the redundancy of the
coverage is. ι indicates the quality of such separation. It should
be useful for approaches on sensor-coverage related problems.

In our following discussions, we will show the effectiveness
of employing ι in sensor-grouping problem.

III. SENSOR-GROUPING PROBLEM IN WSNS

In many application scenarios, to achieve fault tolerance, a
WSN contains a large number of redundant nodes in order
to tolerate node failures. A node sleeping-working schedule
scheme is therefore highly desired to exploit the redundancy
of working sensors and let as many nodes as possible sleep.

Much work in the literature is on this issue [3]. Yan et al
introduced a differentiated service in which a sensor node finds
out its responsible working duration with cooperation of its
neighbors to ensure the coverage of sampled points [7]. Ye et
al developed PEAS in which sensor nodes wake up randomly
over time, probe their neighboring nodes, and decide whether
they should begin to take charge of surveillance work [8]. Xing
et al exploited a probabilistic distributed detection model with
a protocol called Coordinating Grid (Co-Grid) [11]. Wang et al
designed an approach called Coverage Configuration Protocol
(CCP) which introduced the notion that the coverage de-
gree of intersection-points of the neighboring nodes’ sensing-
perimeters indicates the coverage of a convex region [6]. In our
recent work [12], we also provided a sleeping configuration
protocol, namely SSCP, in which sleeping eligibility of a
sensor node is determined by a local Voronoi diagram. SSCP
can provide different levels of redundancy to maintain different
requirements of fault tolerance.

The major feature of the aforementioned protocols is that
they employ online distributed and localized algorithms in
which a sensor node determines its sleeping eligibility and/or
sleeping time based on the coverage requirement of its sensing
area with some information provided by its neighbors.

Another major approach for sensor node sleeping-working
scheduling issue is to group sensor nodes. Sensor nodes in
a network are divided into several disjoint sets. Each set of
sensor nodes are able to maintain the required area surveillance
work. The sensor nodes are scheduled according to which set
they belong to. These sets work successively. Only one set
of sensor nodes work at any time. We call the issue sensor-
grouping problem.

The major advantage of this approach is twofold. First, it
avoids the overhead caused by the processes of coordination
of sensor nodes to make decision on whether a sensor node is
a candidate to sleep or work and how long it should sleep or
work. Such processes should be performed from time to time
during the lifetime of a network in many online distributed
and localized algorithms. The large overhead caused by such
processes is the main drawback of the online distributed and
localized algorithms. On the contrary, roughly speaking, this
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approach groups sensor nodes in one time and schedules when
each set of sensor nodes should be on duty. It does not require
frequent decision-making on working/sleeping eligibility 2.

Second, it avoids time-synchronization requirement of in-
network sensor nodes. Much work, (e.g. [7] and [12] etc.),
addresses node sleeping-working scheduling problem with
an assumption that nodes are time-synchronized. But such
schemes may not be desirable in WSNs. As the scale of a
WSN may be very large in order to monitor a large area, the
large network size poses that a globally synchronized clock is
very expensive to achieved and maintained.

In [13] by Slijepcevic et al, the sensing area is divided into
regions. Sensor nodes are grouped with the most-constrained
least-constraining algorithm. It is a greedy algorithm in which
the priority of selecting a given sensor is determined by how
many uncovered regions this sensor covers and the redundancy
caused by this sensor. In [14] by Cardei et al, disjoint sensor
sets are modeled as disjoint dominating sets. Although maxi-
mum dominating sets computation is NP-complete, the authors
proposed a graph-coloring based algorithm. These algorithms
are centralized solutions of sensor-grouping problem.

However, global information (e.g., the location of each in-
network sensor node) of a large scale WSN is also very
expensive to obtained online. Also it is usually infeasible to
obtain such information before sensor nodes are deployed.
For example, sensor nodes are usually deployed in a random
manner and the location of each in-network sensor node is
determined only after a node is deployed.

The solution of sensor-grouping problem should only base
on locally obtainable information of a sensor node. That is
to say, nodes should determine which group they should join
in a fully distributed way. Here locally obtainable information
refers to a node’s local information and the information that
can be directly obtained from its adjacent nodes, i.e., nodes
within its communication range.

In Subsection III-A, we provide a general problem for-
mulation of the sensor-grouping problem. Distributed-solution
requirement is formulated in this problem. It is followed by
discussion in Subsection III-B on a general sensing model,
which serves as a given condition of the sensor-grouping
problem formulation.

To facilitate our discussions, the notations in our following
discussions are described as follows.
• n: The number in-network sensor nodes.
• S(j) (j = 1, 2, ..., m): The jth set of sensor nodes where

m is the number of sets.
• L(i) (i = 1, 2, ..., n): The physical location of node i.
• φ: The area monitored by the network: i.e., the sensing

area of the network.
• R: The sensing radius of a sensor node. We assume

that a sensor node can only be responsible to monitor
a circular area centered at the node with a radius equal
to R. This is a usual assumption in work that addresses
sensor-coverage related problems. We call this circular
area the sensing area of a node.

2Note that if some nodes die, a re-grouping process might also be performed
to exploit the remaining nodes in a set of sensor nodes. How to provide this
mechanism is beyond the scope of this paper and yet to be explored.

A. Problem Formulation

We assume that each sensor node can know its approximate
physical location. The approximate location information is
obtainable if each sensor node carries a GPS receiver or if
some localization algorithms are employed (e.g., [15]).

Problem 1: Given:
• The set of each sensor node i’s sensing neighbors N (i)

and the location of each member in N (i);
• A sensing model which quantitatively describes how a

point P in area φ is covered by sensor nodes that are
responsible to monitor this point. We call this quantity
the coverage quality of P .

• The coverage quality requirement in φ, denoted by s.
When the coverage of a point is larger than this threshold,
we say this point is covered.

For each sensor node i, make a decision on which group S(j)
it should join so that:
• Area φ can be covered by sensor nodes in each set S(j)
• m, the number of sets S(j) is maximized. ¥
In this formulation, we call sensor nodes within a circular

area centered at a sensor node i with a radius equal to 2 ·R the
sensing neighbors of node i. This is because sensors nodes in
this area, together with node i, may be cooperative to ensure
the coverage of a point inside node i’s sensing area.

We assume that the communication range of a sensor node
is larger than 2 · R, which is also a general assumption in
work that addresses sensor-coverage related problems. That is
to say, the first given condition in Problem 1 is the information
that can be obtained directly from a node’s adjacent nodes. It
is therefore locally obtainable information. The last two given
conditions in this problem formulation can be programmed
into a node before it is deployed or by a node-programming
protocol (e.g., [16]) during network runtime. Therefore, the
given conditions can all be easily obtained by a sensor-
grouping scheme with fully distributed implementation.

We reify this problem with a realistic sensing model in next
subsection.

B. A General Sensing Model

As WSNs are usually employed to monitor possible events
in a given area, it is therefore a design requirement that an
event occurring in the network area must/may be successfully
detected by sensors.

This issue is usually formulated as how to ensure that an
event signal omitted in an arbitrary point in the network area
can be detected by sensor nodes. Obviously, a sensing model
is required to address this problem so that how a point in the
network area is covered can be modeled and quantified. Thus
the coverage quality of a WSN can be evaluated.

Different applications of WSNs employ different types of
sensors, which surely have widely different theoretical and
physical characteristics. Therefore, to fulfill different appli-
cation requirements, different sensing models should be con-
structed based on the characteristics of the sensors employed.

A simple theoretical sensing model is the Boolean sensing
model [6][8][7][9]. Boolean sensing model assumes that a sen-
sor node can always detect an event occurring in its responsible
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sensing area. But most sensors detect events according to the
signal strength sensed. Event signals usually fade in relation
to the physical distance between an event and the sensor.
The larger the distance, the weaker the event signals that can
be sensed by the sensor, which results in a reduction of the
probability that the event can be successfully detected by the
sensor.

As in WSNs, event signals are usually electromagnetic,
acoustic, or photic signals, they fade exponentially with the
increasing of their transmit distance. Specifically, the signal
strength E(d) of an event that is received by a sensor node
satisfies:

E(d) =
α

dβ
(3)

where d is the physical distance from the event to the sensor
node; α is related to the signal strength omitted by the event;
and β is signal fading factor which is typically a positive
number larger than or equal to 2. Usually, α and β are
considered as constants.

Based on this notion, to be more reasonable, researchers
propose collaborative sensing model to capture application
requirements: Area coverage can be maintained by a set of
collaborative sensor nodes: For a point with physical location
L, the point is considered covered by the collaboration of i
sensors (denoted by k1, ..., ki) if and only if the following
two equations holds [12][17][18].

∀j = 1, ..., i; ‖L(kj)− L‖ < R. (4)

C(L) =
i∑

j=1

(E(‖L(kj)− L‖) > s. (5)

C(L) is regarded as the coverage quality of location L in
the network area [12][17][18].

However, we notice that defining the sensibility as the sum
of the sensed signal strength by each collaborative sensor
implies a very special application: Applications must employ
the sum of the signal strength to achieve decision-making. To
capture generally realistic application requirement, we modify
the definition described in Equation (5). The model we adopt
in this paper is described in details as follows.

We consider the probability P(L, kj) that an event located
at L can be detected by sensor kj is related to the signal
strength sensed by kj . Formally,

P(L, kj) = γE(d) =
δ

(‖L(kj)− L‖/ε + 1)β
, (6)

where γ is a constant and δ = γα is a constant too. ε
normalizes the distance to a proper scale and the “+1” item
is to avoid infinite value of P(L, kj).

The probability that an event located at L can be detected
by any collaborative sensors that satisfied Equation (4) is:

P ′(L) = 1−
i∏

j=1

(1− P(L, kj)). (7)

As the detection probability P ′(L) reasonably determines
how an event occurring at location L can be detected by the

networks, it is a good measure of the coverage quality of
location L in a WSN. Specifically, Equation (5) is modified
to:

C(L) = P ′(L)

= 1−
i∏

j=1

[1− δ

(‖L(kj)− L‖/ε + 1)β
] > s. (8)

To sum it up, we consider a point at location L is covered
if Equation (4) and (8) hold.

IV. MAXIMIZING-ι NODE-DEDUCTION ALGORITHM FOR
SENSOR-GROUPING PROBLEM

Before we process to introduce algorithms to solve the
sensor grouping problem, let us define the margin (denoted
by θ) of an area φ monitored by the network as the band-like
marginal area of φ and all the points on the outer perimeter of
θ is ρ distance away from all the points on the inner perimeter
of θ. ρ is called the margin length.

In a practical network, sensor nodes are usually evenly
deployed in the network area. Obviously, the number of sensor
nodes that can sense an event occurring in the margin of the
network is smaller than the number of sensor nodes that can
sense an event occurring in other area of the network. Based
on this consideration, in our algorithm design, we ensure the
coverage quality of the network area except the margin. The
information on φ and ρ is network-based. Each in-network
sensor node can be pre-programmed or on-line informed about
φ and ρ, and thus calculate whether a point in its sensing area
is in the margin or not.

A. Maximizing-ι Node-Deduction Algorithm

The node-deduction process of our Maximizing-ι Node-
Deduction Algorithm (MIND) is simple. A node i greedily
maximizes ι of the sub-network composed by itself, its un-
grouped sensing neighbors, and the neighbors that are in the
same group of itself. Under the constraint that the coverage
quality of its sensing area should be ensured, node i deletes
nodes in this sub-network one by one. The candidate to be
pruned satisfies that:
• It is an ungrouped node.
• The deletion of the node will not result in uncovered-

points inside the sensing area of i.
A candidate is deleted if the deletion of the candidate results
in largest ι of the sub-network compared to the deletion of
other candidates. This node-deduction process continues until
no candidate can be found. Then all the ungrouped sensing
neighbors that are not deleted are grouped into the same group
of node i. We call the sensing neighbors that are in the same
group of node i the group sensing neighbors of node i. We then
call node i a finished node, meaning that it has finished the
above procedure and the sensing area of the node is covered.
Those nodes that have not yet finished this procedure are called
unfinished nodes.

The above procedure initiates at a random-selected node that
is not in the margin. The node is grouped to the first group. It
calculates the resulting group sensing neighbors of it based on
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the above procedure. It informs these group sensing neighbors
that they are selected in the group. Then it hands over the
above procedure to an unfinished group sensing neighbors
that is the farthest from itself. This group sensing neighbor
continues this procedure until no unfinished neighbor can be
found. Then the first group is formed (Algorithmic description
of this procedure can be found at [5]).

After a group is formed, another random-selected ungrouped
node begins to group itself to the second group and initiates the
above procedure. In this way, groups are formed one by one.
When a node that involves in this algorithm found out that the
coverage quality if its sensing area, except what overlaps the
network margin, cannot be ensured even if all its ungrouped
sensing neighbors are grouped into the same group as itself,
the algorithm stops. MIND is based on locally obtainable
information of sensor nodes. It is a distributed algorithm that
serves as an approximate solution of Problem 1.

B. Incremental Coverage Quality Algorithm: A Benchmark for
MIND

To evaluate the effectiveness of introducing ι in the sensor-
group problem, another algorithm for sensor-group problem
called Incremental Coverage Quality Algorithm (ICQA) is
designed. Our aim is to evaluate how an idea, i.e., MIND,
based on locally maximize ι performs.

In ICQA, a node-selecting process is as follows. A node i
greedily selects an ungrouped sensing neighbor in the same
group as itself one by one, and informs the neighbor it is
selected in the group. The criterion is:
• The selected neighbor is responsible to provide surveil-

lance work for some uncovered parts of node i’s sensing
area. (i.e., the coverage quality requirement of the parts
is not fulfilled if this neighbor is not selected.)

• The selected neighbor results in highest improvement of
the coverage quality of the neighbor’s sensing area.

The improvement of the coverage quality, mathematically,
should be the integral of the the improvements of all points
inside the neighbor’s sensing area. A numerical approxima-
tion is employed to calculate this improvement. Details are
presented in our simulation study.

This node-selecting process continues until the sensing area
of node i is entirely covered. In this way, node i’s group
sensing neighbors are found. The above procedure is handed
over as what MIND does and new groups are thus formed
one by one. And the condition that ICQA stops is the same as
MIND. ICQA is also based on locally obtainable information
of sensor nodes. ICQA is also a distributed algorithm that
serves as an approximate solution of Problem 1.

V. SIMULATION RESULTS

To evaluate the effectiveness of employing ι in sensor-
grouping problem, we build simulation surveillance networks.
We employ MIND and ICQA to group the in-network sensor
nodes. We compare the grouping results with respect to how
many groups both algorithms find and how the performance
of the resulting groups are.

Detailed settings of the simulation networks are shown in
Table I. In simulation networks, sensor nodes are randomly
deployed in a uniform manner in the network area.

TABLE I
THE SETTINGS OF THE SIMULATION NETWORKS

Area of sensor field 400m*400m
ρ 20m
R 80m

α, β, γ and ε 1.0, 2.0, 1.0 and 100.0
s 0.6

For evaluating the coverage quality of the sensing area of
a node, we divide the sensing area of a node into several
regions and regard the coverage quality of the central point
in each region as a representative of the coverage quality of
the region. This is a numerical approximation. Larger number
of such regions results in better approximation. As sensor
nodes are with low computational capacity, there is a tradeoff
between the number of such regions and the precision of the
resulting coverage quality of the sensing area of a node. In our
simulation study, we set this number 12. For evaluating the
improvement of coverage quality in ICQA, we sum up all the
improvements at each region-center as the total improvement.

A. Number of Groups Formed by MIND and ICQA

We set the total in-network node number to different values
and let the networks perform MIND and ICQA. For each n,
simulations run with several random seeds to generate different
networks. Results are averaged. Figure 2 shows the group
numbers found in networks with different n’s.
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Fig. 2. The number of groups found by MIND and ICQA

We can see that MIND always outperforms ICQA in terms
of the number of groups formed. Obviously, the larger the
number of groups can be formed, the more the redundancy of
each group is exploited. This output shows that an approach
like MIND that aim to maximize ι of the resulting topology
can exploits redundancy well.

As an example, in case that n = 1500, the results of five
networks are listed in Table II.



6

TABLE II
THE GROUPING RESULTS OF FIVE NETWORKS WITH n = 1500

Net MIND ICQA MIND ICQA
Group Number Group Number Average ι Average ι

1 34 31 0.145514 0.031702
2 33 30 0.145036 0.036649
3 33 31 0.156483 0.033578
4 32 31 0.152671 0.029030
5 33 32 0.146560 0.033109

The difference between the average ι of the groups in
each network shows that groups formed by MIND result
in topologies with larger ι’s. It demonstrates that ι is good
indicator of redundancy in different networks.

B. The Performance of the Resulting Groups

Although MIND forms more groups than ICQA does, which
implies longer lifetime of the networks, another importance
consideration is how these groups formed by MIND and ICQA
perform. We let 10000 events randomly occur in the network
area except the margin. We compare how many events happen
at the locations where the quality is less than the requirement
s = 0.6 when each resulting group is conducting surveillance
work (We call the number of such events the failure number
of group). Figure 3 shows the average failure numbers of the
resulting groups when different node numbers are set.
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Fig. 3. The failure numbers of MIND and ICQA

We can see that the groups formed by MIND outperform
those formed by ICQA because the groups formed by MIND
result in lower failure numbers. This further demonstrates that
MIND is a good approach for sensor-grouping problem.

VI. CONCLUSION

This paper proposes ι, a novel index for evaluation of point-
distribution. ι is the minimum distance between each pair
of points normalized by the average distance between each
pair of points. We find that a set of points that achieve a
maximum value of ι result in a honeycomb structure. We
propose that ι can serve as a good index to evaluate the
distribution of the points, which can be employed in coverage-
related problems in wireless sensor networks (WSNs). We set

out to validate this idea by employing ι to a sensor-grouping
problem. We formulate a general sensor-grouping problem for
WSNs and provide a general sensing model. With an algorithm
called Maximizing-ι Node-Deduction (MIND), we show that
maximizing ι at sensor nodes is a good approach to solve this
problem. Simulation results verify that MIND outperforms a
greedy algorithm that exploits sensor-redundancy we design
in terms of the number and the performance of the groups
formed. This demonstrates a good application of employing ι
in coverage-related problems.
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