TCS: a DSL for the Specification of Textual Concrete Syntaxes in
Model Engineering

Frédéric Jouault

Jean Bézivin

Ivan Kurtev

ATLAS team, INRIA and LINA
{frederic.jouault,jean.bezivin,ivan.kurtev}@univ-nantes.fr

Abstract

Domain modeling promotes the description of various facets of
information systems by a coordinated set of domain-specific lan-
guages (DSL). Some of them have visual/graphical and other may
have textual concrete syntaxes. Model Driven Engineering (MDE)
helps defining the concepts and relations of the domain by the way
of metamodel elements. For visual languages, it is necessary to es-
tablish links between these concepts and relations on one side and
visual symbols on the other side. Similarly, with textual languages
it is necessary to establish links between metamodel elements and
syntactic structures of the textual DSL. To successfully apply MDE
in a wide range of domains we need tools for fast implementation of
the expected growing number of DSLs. Regarding the textual syn-
tax of DSLs, we believe that most current proposals for bridging
the world of models (MDE) and the world of grammars (Gram-
marware) are not completely adapted to this need. We propose a
generative solution based on a DSL called TCS (Textual Concrete
Syntax). Specifications expressed in TCS are used to automatically
generate tools for model-to-text and text-to-model transformations.
The proposed approach is illustrated by a case study in the defini-
tion of a telephony language.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Specialized application languages; D.3.4 [Processors]:
Code Generation

General Terms Languages

Keywords Model Driven Engineering, DSL, Concrete Syntax

1. Introduction

Domain Specific Languages (DSLs) have some properties that
General Purpose Languages (GPLs) like C++, Java, C#, and UML
do not have. For instance, with DSLs, domain concepts are di-
rectly represented by syntactic constucts. This often enables more
concise and precise specifications, which even non-programmer
domain experts can understand. Moreover, a sentence expressed
in a DSL usually makes use of higher-level constructs (e.g. rules)
than an equivalent sentence in a GPL. A DSL may also be designed
to enable reasoning about (e.g. proving properties) or optimizing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’06 October 22-26, 2006, Portland, Oregon, USA.

Copyright (© 2006 ACM 1-59593-237-2/06/0010. .. $5.00.

249

sentences by restricting what the user can do. This is typically not
possible with a GPL.

There are, however, issues limiting the usage of DSLs. A major
one is the reduced availability of tools for DSLs compared to GPLs.
This is emphasized by the fact that several DSLs are typically
required where one GPL is enough. A single GPL may indeed be
used to build even the most complex systems. But numerous DSLs
are necessary to represent the different facets of most systems.

There are several ways to implement DSLs, for example using
XML engineering, Model Driven Engineering (MDE), or Gram-
marware (i.e. grammar-based systems [1]]). There is a growing in-
terest in using MDE for this purpose [2]]. In MDE the different
aspects of a DSL are captured by different models: the domain
concepts are represented in a metamodel; languages like OCL [3]
enable the specification of additional well-formedness constraints
[4]; model transformation is a possible solution for DSL-to-DSL
and even DSL-to-GPL translations; etc. AMMA [2]] (ATLAS Model
Management Architecture) is an MDE framework, which provides
such capabilities in order to build tools for DSLs.

In this work, we consider the concrete syntax facet of DSLs,
when it is textual. The objective is to enable translation from text-
based DSL sentences to their equivalent model representation, and
vice-versa. Such a feature is essential to the development of tools
for text-based DSLs.

The text-to-model problem is classically solved by defining a
grammar, and then using one of the many available parser gener-
ators (e.g. yacc, ANTLR [35]). Model-to-text is generally handled
separately by implementing a visitor that serializes its source model
into an equivalent textual representation. This requires two separate
encodings of the same syntax: grammar and visitor. For model-
based DSLs a third non-syntactic specification (i.e. the metamodel)
is also required. However, there is a significant redundancy between
these elements. For instance, information already available in the
metamodel needs to be duplicated in the grammar (e.g. multiplicity
of elements). Parse trees then need to be converted into models ei-
ther by tree walkers (i.e. visitors) or using annotations in the gram-
mar. These are not only tedious to specify but also depend on the
chosen parser generator.

Implementing tools for a single GPL in this way is generally not
problematic: many GPL tools do not even use parser generators but
human-written parsers. It is, however, not always possible to spend
that much resources on each DSL. To find a solution to these issues,
we explore generative approaches.

We propose an extension to AMMA with support for the specifi-
cation of textual concrete syntaxes. TCS (Textual Concrete Syntax)
is a DSL designed for this purpose. It works by providing means to
associate syntactic elements (e.g. keywords like if, special sym-
bols like +) to metamodel elements with little redundancy. Both
model-to-text and text-to-model translations can be performed us-
ing a single specification. A grammar can thus be generated from

both the metamodel and the TCS model to perform text-to-model
translation. Grammar annotations that build the model while pars-
ing can be automatically generated. Model-to-text translation can
also be performed with the same information. To this end, a generic
interpreter has been defined to traverse the model following the or-
der specified in TCS. Keywords and symbols are written alongside
model information.

TCS contributes a significant capability to AMMA: bridging
the modeling and syntax worlds. The concrete syntax of AMMA
core languages like KM3 [6] (Kernel MetaMetaModel), ATL [7]]
(ATLAS Transformation Language), and TCS itself can be imple-
mented with TCS. The concrete syntax of other DSLs can also be
specified with TCS. An example of such a DSL is SPL [8]] (Session
Processing Language), which we use as a case study in this work.

The paper is organized as follows. Section [2| details the prob-
lem domain of TCS. Section [3] presents the main concepts of the
Textual Concrete Syntax DSL illustrated on SPL. Implementation
issues are discussed in Section[d] Section[5]gives related work, and
Section[@lconcludes.

2. Background

Before presenting the details of the TCS language we give a short
overview of the concepts required to understand the rationale be-
hind it. TCS is a DSL that operates in the context of the AMMA
framework. It facilitates the conversion between models defined in
the AMMA space and their textual representations found in Gram-
marware. The concept of DSL, and the AMMA architecture are
explained below.

2.1 Domain Specific Languages

A DSL is a language designed to solve a delimited set of problems.
This contrasts with GPLs that are supposed to be useful for much
more generic tasks, crossing multiple application domains. A given
DSL provides means for expressing concepts derived from a well-
defined and well-scoped domain of interest.

Similarly to GPLs, DSLs have the following properties:

e They usually have a concrete syntax;
e They may also have an abstract syntax;
e They have a semantics, implicitly or explicitly defined.

In the context of MDE we consider a DSL as a set of coor-
dinated models. This is aligned to one of the main principles of
MBDE: to consider models as unification concept. In the following
paragraphs we elaborate on this vision by describing the types of
models found in a DSL and their purpose.

Domain Definition Metamodel. As we mentioned, the basic
distinction between DSLs and GPLs is based on the relation to a
given domain. Programs (sentences) in a DSL represent concrete
states of affairs in this domain, i.e. they are models. A conceptu-
alization of the domain is an abstract entity that captures the com-
monalities among the possible state of affairs. It introduces the ba-
sic abstractions of the domain and their mutual relations. Once such
an abstract entity is explicitly represented as a model it becomes a
metamodel for the models expressed in the DSL. We refer to this
metamodel as a Domain Definition MetaModel (DDMM).

Concrete Syntax. A DSL may have different concrete syntaxes.
A concrete syntax may be defined by a transformation model that
maps the DDMM onto a “display surface” metamodel. Examples
of display surface metamodels may be SVG [9] or GraphViz [10],
but also XML.

Semantics. A DSL may have an execution semantics definition.
This semantics definition may also be defined by a transformation
model that maps the DDMM onto another DSL having by itself a
precise execution semantics or even to a GPL.

SPL

DSLx

5{ DDMM ‘

Legend ‘ Ccs ‘ (o] }—\
Mode! Mapping

Model <Name>:
- DDMM: Domain
Definition MetaModel
- CS: Concrete Syntax
- <Name>: transformation

E— definedin

‘ DDMM

/l DDMM ‘ ‘ DDMM F
==

‘KM&‘ZEcare}»H ‘ ATL2VM ‘ %«‘ TCSZEBNF‘
[

cs

L~ oo/ el
Q
|

N>

Figure 1. AMMA core DSLs

In the context of MDE there is a need for efficient tools for
specification of DSLs. In this paper we use and extend the AMMA
modeling architecture that provides tools for defining DSLs. The
next section briefly describes the main components of AMMA.

2.2 The AMMA Framework

AMMA is built upon the vision described in the previous section.
AMMA provides several DSLs that are used to define the compo-
nents of other DSLs. They form the core of the framework. This
core includes a language for describing metamodels called KM3
and a model transformation language called ATL. In this work, we
extend the already proposed AMMA structure with TCS in order
to specify the textual concrete syntax of DSLs. Figure[]shows the
components of AMMA (including TCS) and how they may be used
to define DSLs.

It can be seen that these three DSLs contain models that are
expressed in some other DSL from the core. For example, the
DDMM of KM3 is defined in KM3. The concrete syntax of KM3
is defined in TCS. Furthermore, KM3 is mapped to the elements of
Ecore [[11] by using an ATL transformation (the box KM32Ecore).
The semantics of ATL is defined as a transformation to the language
of the ATL virtual machine (ATL2VM). This transformation is itself
expressed in ATL.

We can define other DSLs by using the core DSLs of AMMA.
For example, the SPL language contains two models. Its DDMM is
defined in KM3 and its concrete syntax in TCS. The semantics of
the language is not defined since we assumed that it is implemented
by already existing tools.

An arbitrary language (denoted as DSLx in Figure [I) can be
defined in a similar manner. In the context of DSLx, the box
Mapping denotes a possible mapping to another DSL or a GPL
such as Java.

We can clearly identify that there already exist technologies that
provide the required functionality for specifying various forms of
concrete syntaxes. For example, Grammarware provides means for
definition of grammars and tools for language manipulation such
as parsers and parser generators. Another form of concrete syntax
may be based on XML and therefore the tools available in the XML
technology should be used.

It is generally more efficient to reuse existing tools for syntax
definition instead of inventing/reinventing new ones.

MDE
Technology

Grammarware
Technology

Legend:
—>

——» transformation input

conformsTo

ANTLRGEN ANTLR parser generator

Figure 2. Overview of TCS usage

2.3 Basic KM3 Concepts

TCS works by associating syntactical elements to metamodel el-
ements. All the metamodel examples given in Section [3| are ex-
pressed in KM3. TCS semantics is also defined in relation to KM3.
We give a brief description of KM3 here that should help under-
standing the rest of the paper. A more detailed description including
formal semantics is given in [6].

KM3 is a metametamodel that has concepts similar to those
found in MOF [12] but is simpler than MOF. The class Classi-
fier denotes concepts that may have instances. It is specialized into
DataType and Class. Datatypes have instances that are literal val-
ues. Class instances have structure that consists of a set of Struc-
turalFeatures. By instances of a Class we mean here model ele-
ments conforming to this class (see [6]). There are two kinds of
structural features: attribute and reference. Structural features are
typed and have multiplicity. The multiplicity of a feature is encoded
by a pair of values called lower and upper. Classes may extend zero
or more other classes and may be abstract.

3. TCS: Bridging Metamodels and Grammars

Many of the problems related to textual concrete syntaxes are
already solved in the Grammarware technology. There is no reason
to rebuild such facilities in AMMA. What we need is a pair of
translators between models and their textual representations. TCS
is a language that allows specification and automatic generation of
these translators between Grammarware and MDE per given DSL.

This section presents the syntactical constructs of TCS and their
semantics based on examples. We start with an overview of the
usage of the language and gradually present the syntax going from
simpler to more complex features.

3.1 Overview

The overview of the usage of the TCS language is shown in Figure
[2l Assume we want to build a DSL called L. In AMMA we provide
a metamodel of L named M M, expressed in KM3. The definition
of the concrete syntax is expressed in TCS and is denoted as C'Sy..
The required bridge consists of an injector and an extractor. The
injector takes a model in L expressed in the textual concrete syntax
of L and generates a model conforming to M My,. An example
model is denoted as SMp and it conforms to the grammar of
L denoted as Gr. G is expressed in ANTLR. The extractor
generates textual representation of models conforming to M M.

251

Figure [2| shows an example in which a model M, is extracted to
L.

The approach we take starts with the metamodel and the con-
crete textual syntax description of a given language L. Our goal is
to obtain three entities for L: its annotated grammar G, expressed
in ANTLR, and the couple of injector and extractor. G, is gen-
erated by an ATL transformation named TCS2ANTLR.atl. It takes
M M7y, and C'Sy, as input (shown with dashed lines) and generates
the production rules and the annotations in G'r,. This grammar is
used to generate the injector. The injector is a parser generated by
the tools provided by the ANTLR technology. The generation is
done by the ANTLR parser generator (denoted as ANTLR GEN).

The extractor works on the internal representation of models
expressed in L and creates their textual representation. It is possible
to generate an extractor per every language L. However, we take
another approach in which a single extractor is implemented as
an interpreter that works for every language. The extractor takes a
model M, written in L, its metamodel M M7, and its TCS syntax
description C'S, and generates the textual representation SM7, of
Mr.

Using TCS is typically simpler than developing ad-hoc injec-
tors and extractors. One specification is enough for both directions.
Moreover, redundancy between a TCS model and its corresponding
metamodel is reduced (e.g. property multiplicity and type are omit-
ted in TCS). With an ideal tool, both the abstract and concrete syn-
taxes should be specified separately without impacting each other’s
structure. However, TCS simplification power comes at a certain
price: the structural gap between a metamodel and a TCS model is
limited. This means that compromises have to be made: either the
syntax is adapted to be within TCS possibilities, or the metamodel
is simplified.

An important constraint imposed by TCS on metamodels is that
they must have a root element. This is roughly equivalent to a start
symbol in the corresponding grammar. Other limitations will be
presented in Section[d]

3.2 Running Example: SPL

SPL is used as a running example throughout this paper. We start
by showing how SPL concrete syntax looks like. Listing [T] shows
a simple SPL program that forwards incoming calls to address
sip:phoenix@barbade.enseirb.fr. The SimpleForward ser-
vice (lines 1-11) declares the target address (line 3) and a registra-
tion session (lines 6-10). This session contains an INVITE method
(lines 6-8) which forwards incoming calls to the declared address
(line 7).

Listing 1. Simple SPL program
service SimpleForward {
processing {
uri us = ’sip:phoenix@barbade.enseirb.fr’;

registration {
response incoming INVITE() {
return forward us;

}
}
}
}

Explanations of how TCS works are illustrated by showing how
it can be used to specify the SPL concrete syntax. We give excerpts
from the SPL. metamodel in KM3, and the corresponding excerpts
from the concrete syntax specification in TCS. The metamodel ex-
cerpts are necessary because TCS works by annotating this abstract
syntax. Only a subset of SPL. metamodel and syntax will be given
here. The full SPL metamodel and TCS model can be found on the
GMT website [13] in the CPL2SPL example, which is described in
[14].

sip:phoenix@barbade.enseirb.fr

© 0 NGO W N R

11

Let us consider the first metamodel excerpt given in Listing
[2 It starts with the declaration of the String data type. Then it
specifies that an SPL Program (lines 3-5) contains (line 4) exactly
one Service (lines 7-11). The latter has a name of type String (line
8), declarations of type Declaration (line 9), and sessions of type
Session (line 10).

Listing 2. SPL metamodel excerpt in KM3: Program and Service
datatype String;

class Program extends LocatedElement {
reference service container : Service;

}

class Service extends LocatedElement {
attribute name : String;
reference declarations|[*] ordered container
—Declaration;
reference sessions[x] ordered container

}

Listing [3] gives a TCS model excerpt specifying the concrete
syntax of these elements according to Listing[T] Here is an informal
description:

: Session;

e String. Data type String is represented as an identifier corre-
sponding to lexer non-terminal NAME (line 1).

e Program. Class Program is represented as its contained service
(lines 3-5).

e Service. Class Service is represented as: keyword service, the
name of the service, symbol {, keyword processing, symbol
{, the declarations of the service, its sessions, and two
symbols } (lines 7-14).

TCS elements are associated to their corresponding metamodel
elements by their names. For instance, TCS template Program
corresponds to KM3 class Program and TCS property service to
KM3 feature service.

Listing 3. SPL TCS model excerpt: Program and Service

primitiveTemplate identifier for String default using

—NAME ;

template Program main
service

template Service -- context: put this here?
"service" name "{"

"processing" "{"
declarations
sessions
" } n
" } "
A detailed description of the basic TCS constructs used here
and of their semantics is given in Section[3.3] Sections[3.4] and[3.3]
present more complex TCS constructs.

3.3 Basic Constructs

This section presents the basic TCS constructs. Most of them are
illustrated in Listing [3] By default, line number references given in
this section refer to this listing.

Each metamodel Classifier is associated to a TCS Template,
which specifies how to textually represent model elements typed
by this Classifier. There are two main kinds of TCS Templates:

¢ PrimitiveTemplates specify the lexer token corresponding to a
given metamodel DataType, identified by its name. More than
one primitive template may be defined for a single data type.
This is typically the case for strings: one template represents

252

them as identifiers, whereas a second one represents them as
string literals. Exactly one primitive template may be declared
as default for each data type. Line 1 specifies default prim-
itive template identifier for data type String, which corre-
sponds to lexer token NAME.

ClassTemplates specify how classes are represented. This
specification consists of a sequence of syntactic elements that
are: keywords, special symbols, etc. A ClassTemplate has the
same name as its corresponding Class. Exactly one class tem-
plate must be declared as main (e.g. line 3 for template Pro-
gram). It corresponds to the root of the model. In contrast to
primitive templates, only one class template can be defined for
each class in the metamodel. This design choice is aimed at
simplifying the TCS specifications. Our experiments have not
shown that it is too restrictive.

Syntactic elements are used to represent the contents of a Class.
They can be of the following kinds:

e Keywords. A keyword is a reserved word with specific mean-
ing. In SPL, service (line 8) and processing (line 9) are
keywords. A keyword is specified between double quotes.

Special Symbols. A special symbol is a sequence of characters
used as separator or operator (e.g. { line 8 and 9). It is specified
between double quotes. Each symbol must additionally be listed
in the symbols section of the TCS model (not shown here due
to space limitations).

Properties. A property corresponds to a metamodel structural
feature (i.e. attribute or reference) of the class associated to the
contextual template or one of its super classes. It is specified as
an identifier, which value is the name of its associated feature.
The textual representation of a property depends on its associ-
ated feature, especially its type and multiplicity. For simplifi-
cation we will later directly refer to these as a property’s type
and multiplicity. Optional property arguments can be specified
between curly braces ({ and }). This is detailed below. Identi-
fier service at line 4 is a property corresponding to reference
service of class Program (line 2, Listing [2)).

As mentioned above, the textual representation of a property
depends on its type 1. There are two possibilities corresponding to
the two main kinds of templates presented above:

e DataType. When T is a DataType, a primitive template is used.
This primitive template is chosen among those associated to
T. A specific template may be specified by its name using the
as = <name> property argument. If no explicit primitive tem-
plate is specified a default primitive template must be defined
for the type and will be used. Property name at line 8 is asso-
ciated to the String DataType. Primitive template identifier
specified at line 1 is therefore used to represent its value.

e Class. When 7' is a Class, the class template corresponding to
class T is used. Class template Service defined at lines 7-14
is thus used to represent property service at line 4.

The multiplicity of the property is used to know the number
of times the template must be used. A separator to be placed
between each use of the template may be specified using the
separator = <separator> property argument.

3.4 Additional Constructs

In the previous sections we saw how basic TCS constructs can
be used to specify a simple syntax. These basic constructs are,
however, not always powerful or convenient enough to handle
more complex syntaxes. We describe here some relatively simple

TCS constructs, which help overcoming some of basic constructs
limitations. Their semantics is briefly outlined.

e Abstract ClassTemplates enable the navigation of inheritance
hierarchy. For each abstract class template a production rule is
generated. It has the form of an alternative of non-terminals
corresponding to the subclasses of its associated class. This
feature is typically used with abstract classes.

Conditionals are used when the presence of a sequence of syn-
tactic elements in the concrete syntax depends on a condition.

Symbol table handling enables the use of cross-references. Let
us consider, for instance, a variable use such as us on line 7
of Listing[T] Without cross-references, the variable expression
would simply include the name of the variable without any link
to its declaration. Using TCS symbol table handling, a reference
from the variable use to the variable declaration is possible. This
construct supports multiple environments with nesting.

Operators can be specified with their priority, associativity
(left or right), symbol (e.g. ”+7), etc. OperatorTemplates may
then refer to these operators. An appropriate structure is created
in the target grammar. For instance, one rule is created per pri-
ority using the rule of higher priority. This works for LL(k) and
LALR(1) grammar generators. For LALR(1) grammar genera-
tors, operators may also be simply defined with their priorities.
The LALR(1) generated parser will then use this information
upon shift-reduce conflicts. It is not possible to give more de-
tails on this rather complex feature here. OperatorTemplates are
used in the SPL syntax for arithmetic expressions.

There are other constructs in TCS that are not essential. For
instance, there is a construct that enables reusing portions of a TCS
specification.

3.5 Specific Constructs for Model to Text

A TCS model specifies a concrete syntax for a DSL that can be
applied in both text-to-model and model-to-text directions. There
are, however, concerns that are specific to the model-to-text direc-
tion: coding style concerns and indentations. They also need to be
taken into account by TCS models. Coding style does not impact
the grammar, only the serialization of blanks (or any other ignored
tokens). Additional syntactic elements are provided for serializa-
tion support:

¢ Block. TCS blocks provide indentation information. They are
delimited by square brackets (i.e. [and 1). By default, each
element contained in a block is on a separate line with proper
indentation. Each block may additionally have specific argu-
ments.

Special Symbol Spacing Each special symbol definition can
declare how spaces should be written around it. By default,
symbols are neither prefixed nor suffixed with spaces be-
cause it is usually not necessary to disambiguate the grammar.
leftSpace (resp. rightSpace) declares that the symbol must
be prefixed (resp. suffixed) with a whitespace. leftNone (resp.
rightNone) declares that the symbol must not be prefixed
(resp. suffixed) with a whitespace even if the previous (resp.
following) symbol declared rightSpace (resp. leftSpace).

Custom Separator. When none of the above constructs is
enough, custom separators may be used. For instance: <space>
to force the serialization of a space, and <newline> to force a
line feed.

Although no experiment has been conducted in this direction
yet, we believe that indentation information specified in TCS could
also be used by a text editor to provide automatic indentation.

253

4.

First, we briefly mention two features of TCS that are not directly
related to the TCS language constructs:

Implementation Issues

e Traceability. The current implementation of TCS provides
text-to-model traceability by keeping line and column infor-
mation in models.

e Generic Editor. Textual Generic Editor (TGE) is a tool that
partly builds on TCS services. It is available as part of the AM3
project [13]. TGE provides a text editor which is parameterized
by information gathered from TCS models. An outline (i.e. tree
representation of a program) is generated using TCS text-to-
model ability. Hyperlinks and hovers (i.e. automatic display of
the target of a link) are provided using text-to-model traceabil-
ity.

Second, although the TCS tools already enable complex syntax
specification, they still have some limitations. We list here some of
them and try to provide some hints towards solutions:

¢ Error reporting ranges over two levels. Firstly, errors in TCS
and KM3 source models may prevent the correct generation of
the target grammar. These errors can typically be expressed as
OCL constraints over these source models [4]]. Secondly, even
when the target grammar is syntactically correct, it may be
ambiguous. Non-determinisms reported by the parser generator
(ANTLRV2 in our case) are not traced back to corresponding
TCS elements. A possible solution to this problem would be to
implement traceability between TCS and KM3 models on one
hand and the grammar on the other hand.

e Grammar class depends on the parser generator that is used.
For instance, with ANTLRV2 it is a linear approximation of
LL(k). The new version of ANTLR (version 3, or ANTLRv3)
is LL(*) [I15]. Porting TCS to ANTLRv3 requires to adapt the
generated grammar to ANTLRv3 syntax and API, which is
used by the generated annotations. This would provide a more
powerful tool: fewer grammars are ambiguous in LL(*) than
in LL(k). Similarly, TCS could also be ported to other parser
generators such as yacc, which is LALR(1).

Case insensitive and blank-delimited languages are currently
not correctly supported. Preliminary experiments suggest that
the first issue should not be difficult to solve. The second issue
requires a close cooperation between lexer and parser, which
may not be easy to do in the general case.

5. Related Work

There exist various solutions to give concrete syntaxes to DSLs. In
this section, we focus on DSLs whose abstract syntax is defined as a
metamodel and a textual syntax is supplied. Below we comment on
some approaches for giving concrete syntax to modeling languages
in the context of MDE:

e XMI. The Object Management Group (OMG) default model
serialization standard is XML Model Interchange [16] (XMI).
One of XML advantages is that it can be parsed efficiently with-
out knowing about the DTD or Schema (i.e. metamodel). An-
other advantage of XMI compared to TCS is that it does not
need anything more than the metamodel. This standard spec-
ifies rules to automatically derive the corresponding Schema
from the metamodel. However, XMI syntax is rather verbose.
It is intended for serialization and exchange of models between
modeling tools. It is difficult for humans to directly use the XMI
syntax for expressing models.

HUTN. The OMG has also specified a standard for serializ-
ing models with a non-XML textual syntax. Similarly to TCS,

an implementation of Human Usable Textual Notation [17]
(HUTN) typically requires a parser generator, which is not the
case for XMI. In contrast to TCS, the grammar is automati-
cally generated. An obvious advantage of this approach is that
any model can be represented in textual notation at a very low
cost. However, HUTN imposes very strict constraints on the no-
tation. Users cannot provide their own syntax customizations.
TCS enables user-specified syntax with a greater flexibility than
HUTN and therefore the specification of more user-friendly
syntaxes.

Code generation templates. Tools like EMF JET [L1] (Java
Emitter Templates) enable flexible generation of code. This so-
lution is mostly unidirectional (model-to-text) but offers almost
total independence between the source metamodel and the tar-
get grammar. There need not even be a grammar at all. Tem-
plates are often used to perform a semantic transformation as
well as a syntactic pretty printing.

MOF Model to Text. XMI and HUTN are not suitable for
code generation because there is no control on the target syntax.
Another OMG standard proposes to deal with this issue: Model
to Text [18]]. The requirements are for unidirectional translation
of models to text. The comments and example given above
about code generation templates are also true for this solution.
Moreover, we also expect that there will soon be another MOF
Text to Model standard.

6. Conclusion

In this paper we presented TCS: a DSL for providing concrete syn-
taxes to DSLs defined in or with the AMMA framework. The con-
structs in TCS allow the software engineer to establish correspon-
dences between elements in the language metamodel and their syn-
tactic representation.

Our approach has several benefits. First, the developer is freed
from the need to specify a grammar and its annotation in order to
generate a parser. Instead, she may focus on the syntax templates
for language constructs and obtain the annotated grammar automat-
ically. Second, the usage of a language such as TCS leads to a better
separation of concerns. The details of the underlying parser gener-
ator are hidden from the language designer. This facilitates the re-
placement of one parser generator system with another. Third, TCS
specifications enable automatic generation of bidirectional bridges
that perform the tasks for text-to-model and model-to-text conver-
sion.

The automation that we pursue comes with paying the price of
certain compromises in the abstract and concrete syntaxes. The us-
age of TCS leads to less freedom in syntax customization com-
pared to an approach in which the grammar is specified by hand
and a dedicated parser is developed just for one specific language.
However, our goal is to provide a solution for rapid development
of concrete syntaxes for DSLs. If the problem at hand is to develop
a single, eventually general purpose language then the efforts for
developing a dedicated parser are worthwhile. If, however, a large
number of DSLs are to be developed quickly then an automated
generative solution is a better option.

Apart from the example presented throughout the paper (i.e.
SPL) we also used TCS to specity the concrete syntaxes of AMMA
languages: KM3, ATL, and TCS itself. The result of this experi-
ment is encouraging since it shows that TCS can handle non-trivial
concrete syntaxes, such as the syntax of ATL, which uses OCL,
without making any critical compromise.

254

Acknowledgments

We would like to thank Charles Consel and his team who designed
the SPL language, which we used to illustrate TCS. This work is
being partially supported by ModelPlex, IST European project.

References

[1] Kort, J., Klint, P, Klusener, S., Limmel, R., Verhoef, C., Verhoeven,
E.J.: Engineering of Grammarware, http://www.cs.vu.nl/
grammarware/. (2005)

[2] Bézivin, J., Jouault, E., Kurtev, 1., Valduriez, P.. Model-based DSL
Frameworks. In: Companion to the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2006, October 22-26, 2006, Portland,
OR, USA, ACM (2006) to appear.

[3] OMG: UML OCL 2.0 Specification, OMG Document ptc/03-10-14,
http://www.omg.org/docs/ptc/03-10-14.pdf| (2003)

[4] Bézivin, J., Jouault, F.: Using ATL for Checking Models. In:
Proceedings of the International Workshop on Graph and Model
Transformation (GraMoT), Tallinn, Estonia (2005)

[5] Parr, T., Quong, R.: ANTLR: A Predicated LL(k) Parser Generator.
Software — Practice and Experience 25(7) (1995) 789-810

[6] Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specification. In:
Proceedings of 8th IFIP International Conference on Formal Methods
for Open Object-Based Distributed Systems, LNCS 4037, Bologna,
Italy (2006) 171-185

[7] Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Satellite
Events at the MoDELS 2005 Conference. Volume 3844 of Lecture
Notes in Computer Science., Springer-Verlag (2006) 128—138

[8] Burgy, L., Consel, C., Latry, F., Lawall, J., Réveillere, L., Palix, N.:
Language Technology for Internet-Telephony Service Creation. In:
IEEE International Conference on Communications. (2006)

[9] Andersson, O., et al.: W3C Working Draft of Scalable Vector
Graphics (SVG) 1.2, http://www.w3.org/TR/SVG12/. (2005)

[10] Gansner, E.R., North, S.C.: An open graph visualization system and
its applications to software engineering. Software — Practice and
Experience 30(11) (2000) 1203-1233

[11] Budinsky, F., Steinberg, D., Ellersick, R., Merks, E., Brodsky, S.A.,
Grose, T.J.: Eclipse Modeling Framework. Addison Wesley (2003)

[12] OMG: Meta Object Facility (MOF) 2.0 Core Specification, OMG
Document formal/2006-01-01, http://www.omg.org/cgi-bin/
doc?formal/2006-01-01. (2006)

[13] ATLAS team: ATLAS MegaModel Management (AM3) Home page,
http://www.eclipse.org/gmt/am3/. (2006)

[14] Jouault, F., Bézivin, J., Consel, C., Kurtev, L., Latry, F.: Building
DSLs with AMMA/ATL, a Case Study on SPL and CPL Telephony
Languages. In: Proceedings of the 1st ECOOP Workshop on Domain-
Specific Program Development (DSPD), July 3rd, Nantes, France.
(2006)

[15] Parr, T.. ANTLR v3,http://antlr.org/v3/index.html. (2006)
[16] OMG: MOF 2.0 / XMI Mapping Specification, v2.1, OMG

Document formal/2005-09-01, http://www.omg.org/cgi-bin/
doc?formal/2005-09-01} (2005)

[17] OMG: Human-Usable Textual Notation, v1.0, OMG Docu-
ment formal/2004-08-01, http://www.omg.org/cgi-bin/doc?
formal/2004-08-01. (2004)

[18] OMG: MOF Model to Text Transformation Language, http: //www.
omg.org/cgi-bin/apps/doc?ad/04-04-07.pdf| (2004)

http://www.cs.vu.nl/grammarware/
http://www.cs.vu.nl/grammarware/
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.w3.org/TR/SVG12/
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.eclipse.org/gmt/am3/
http://antlr.org/v3/index.html
http://www.omg.org/cgi-bin/doc?formal/2005-09-01
http://www.omg.org/cgi-bin/doc?formal/2005-09-01
http://www.omg.org/cgi-bin/doc?formal/2004-08-01
http://www.omg.org/cgi-bin/doc?formal/2004-08-01
http://www.omg.org/cgi-bin/apps/doc?ad/04-04-07.pdf
http://www.omg.org/cgi-bin/apps/doc?ad/04-04-07.pdf

	1 Introduction
	2 Background
	2.1 Domain Specific Languages
	2.2 The AMMA Framework
	2.3 Basic KM3 Concepts

	3 TCS: Bridging Metamodels and Grammars
	3.1 Overview
	3.2 Running Example: SPL
	3.3 Basic Constructs
	3.4 Additional Constructs
	3.5 Specific Constructs for Model to Text

	4 Implementation Issues
	5 Related Work
	6 Conclusion

