skip to main content
article

Object tracking: A survey

Published: 25 December 2006 Publication History

Abstract

The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.

References

[1]
Aggarwal, J. K. and Cai, Q. 1999. Human motion analysis: A review. Comput. Vision Image Understand. 73, 3, 428--440.]]
[2]
Ali, A. and Aggarwal, J. 2001. Segmentation and recognition of continuous human activity. In IEEE Workshop on Detection and Recognition of Events in Video. 28--35.]]
[3]
Avidan, S. 2001. Support vector tracking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 184--191.]]
[4]
Baddeley, A. 1992. Errors in binary images and an l version of the haus- dorff metric. Nieuw Archief voor Wiskunde 10, 157--183.]]
[5]
Ballard, D. and Brown, C. 1982. Computer Vision. Prentice-Hall.]]
[6]
Bar-Shalom, Y. and Foreman, T. 1988. Tracking and Data Association. Academic Press Inc.]]
[7]
Barron, J., Fleet, D., and Beauchemin, S. 1994. Performance of optical flow techniques. Int. J. Comput. Vision 12, 43--77.]]
[8]
Beaulieu, J. and Goldberg, M. 1989. Hierarchy in picture image segmentation: A step wise optimization approach. IEEE Trans. Patt. Analy. Mach. Intell. 11, 150--163.]]
[9]
Bertalmio, M., Sapiro, G., and Randall, G. 2000. Morphing active contours. IEEE Trans. Patt. Analy. Mach. Intell. 22, 7, 733--737.]]
[10]
Beymer, D. and Konolige, K. 1999. Real-time tracking of multiple people using continuous detection. In IEEE International Conference on Computer Vision (ICCV) Frame-Rate Workshop.]]
[11]
Birchfield, S. 1998. Elliptical head tracking using intensity gradients and color histograms. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 232--237.]]
[12]
Black, M. and Anandan, P. 1996. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Comput. Vision Image Understand. 63, 1, 75--104.]]
[13]
Black, M. and Jepson, A. 1998. Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. Int. J. Comput. Vision 26, 1, 63--84.]]
[14]
Blake, A. and Isard, M. 2000. Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion. Springer.]]
[15]
Blum, A. and Mitchell, T. 1998. Combining labeled and unlabeled data with co-training. In 11th Annual Conference on Computational Learning Theory. 92--100.]]
[16]
Blum, A. L. and Langley, P. 1997. Selection of relevant features and examples in machine learning. Artific. Intell. 97, 1-2, 245--271.]]
[17]
Boser, B., Guyon, I. M., and Vapnik, V. 1992. A training algorithm for optimal margin classifiers. In ACM Workshop on Conference on Computational Learning Theory (COLT). 142--152.]]
[18]
Bowyer, K., Kranenburg, C., and Dougherty, S. 2001. Edge detector evaluation using empirical roc curve. Comput. Vision Image Understand. 10, 77--103.]]
[19]
Bregler, C., Hertzmann, A., and Biermann, H. 2000. Recovering nonrigid 3d shape from image streams. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 690--696.]]
[20]
Broida, T. and Chellappa, R. 1986. Estimation of object motion parameters from noisy images. IEEE Trans. Patt. Analy. Mach. Intell. 8, 1, 90--99.]]
[21]
Cai, Q. and Aggarwal, J. 1999. Tracking human motion in structured environments using a distributed camera system. IEEE Trans. Patt. Analy. Mach. Intell. 2, 11, 1241--1247.]]
[22]
Canny, J. 1986. A computational approach to edge detection. IEEE Trans. Patt. Analy. Mach. Intell. 8, 6, 679--698.]]
[23]
Caselles, V., Kimmel, R., and Sapiro, G. 1995. Geodesic active contours. In IEEE International Conference on Computer Vision (ICCV). 694--699.]]
[24]
Cham, T. and Rehg, J. M. 1999. A multiple hypothesis approach to figure tracking. In IEEE International Conference on Computer Vision and Pattern Recognition. 239--245.]]
[25]
Chang, Y. L. and Aggarwal, J. K. 1991. 3d structure reconstruction from an ego motion sequence using statistical estimation and detection theory. In Workshop on Visual Motion. 268--273.]]
[26]
Chen, Y., Rui, Y., and Huang, T. 2001. Jpdaf based hmm for real-time contour tracking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 543--550.]]
[27]
Collins, R., Lipton, A., Fujiyoshi, H., and Kanade, T. 2001. Algorithms for cooperative multisensor surveillance. Proceedings of IEEE 89, 10, 1456--1477.]]
[28]
Comaniciu, D. 2002. Bayesian kernel tracking. In Annual Conference of the German Society for Pattern Recognition. 438--445.]]
[29]
Comaniciu, D. and Meer, P. 1999. Mean shift analysis and applications. In IEEE International Conference on Computer Vision (ICCV). Vol. 2. 1197--1203.]]
[30]
Comaniciu, D. and Meer, P. 2002. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Patt. Analy. Mach. Intell. 24, 5, 603--619.]]
[31]
Comaniciu, D., Ramesh, V., and Meer, P. 2003. Kernel-based object tracking. IEEE Trans. Patt. Analy. Mach. Intell. 25, 564--575.]]
[32]
Cootes, T., Edwards, G., and Taylor, C. 2001. Robust real-time periodic motion detection, analysis, and applications. IEEE Trans. Patt. Analy. Mach. Intell. 23, 6, 681--685.]]
[33]
Costeira, J. and Kanade, T. 1998. A multibody factorization method for motion analysis. Int. J. Comput. Vision 29, 3, 159--180.]]
[34]
Cox, I. and Hingorani, S. 1996. An efficient implementation of reid's multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE Trans. Patt. Analy. Mach. Intell. 18, 2, 138--150.]]
[35]
Cox, I. J. 1993. A review of statistical data association techniques for motion correspondence. Int. J. Comput. Vision 10, 1, 53--66.]]
[36]
Cremers, D., Kohlberger, T., and Schnorr, C. 2002. Non-linear shape statistics in mumford-shah based segmentation. In European Conference on Computer Vision (ECCV).]]
[37]
Cremers, D. and Schnorr, C. 2003. Statistical shape knowledge in variational motion segmentation. I. Srael Nent. Cap. J. 21, 77--86.]]
[38]
Dockstader, S. and Tekalp, A. M. 2001a. Multiple camera tracking of interacting and occluded human motion. Proceedings of the IEEE 89, 1441--1455.]]
[39]
Dockstader, S. and Tekalp, M. 2001b. On the tracking of articulated and occluded video object motion. Real Time Image 7, 5, 415--432.]]
[40]
Edwards, G., Taylor, C., and Cootes, T. 1998. Interpreting face images using active appearance models. In International Conference on Face and Gesture Recognition. 300--305.]]
[41]
Elgammal, A., Duraiswami, R., Harwood, D., and Davis, L. 2002. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE 90, 7, 1151--1163.]]
[42]
Elgammal, A., Harwood, D., and Davis, L. 2000. Non-parametric model for background subtraction. In European Conference on Computer Vision (ECCV). 751--767.]]
[43]
Fieguth, P. and Terzopoulos, D. 1997. Color-based tracking of heads and other mobile objects at video frame rates. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 21--27.]]
[44]
Freund, Y. and Schapire, R. 1995. A decision-theoretic generalization of on-line learning and an application to boosting. Computat. Learn. Theory. 23--37.]]
[45]
Friedman, J., Hastie, T., and Tibshirani, R. 2000. Additive logistic regression: A statistical view of boosting. annals of statistics. Ann. Stat. 38, 2, 337--374.]]
[46]
Gao, X., Boult, T., Coetzee, F., and Ramesh, V. 2000. Error analysis of background adaption. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 503--510.]]
[47]
Gavrila, D. M. 1999. The visual analysis of human movement: A survey. Comput. Vision Image Understand. 73, 1, 82--98.]]
[48]
Gear, C. W. 1998. Multibody grouping from motion images. Int. J. Comput. Vision 29, 2, 133--150.]]
[49]
Greenspan, H., Belongie, S., Goodman, R., Perona, P., Rakshit, S., and Anderson, C. 1994. Overcomplete steerable pyramid filters and rotation invariance. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 222--228.]]
[50]
Grewe, L. and Kak, A. 1995. Interactive learning of a multi-attribute hash table classifier for fast object recognition. Comput. Vision Image Understand. 61, 3, 387--416.]]
[51]
Haralick, R., Shanmugam, B., and Dinstein, I. 1973. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 33, 3, 610--622.]]
[52]
Haritaoglu, I., Harwood, D., and Davis, L. 2000. W4: real-time surveillance of people and their activities. IEEE Trans. Patt. Analy. Mach. Intell. 22, 8, 809--830.]]
[53]
Harris, C. and Stephens, M. 1988. A combined corner and edge detector. In 4th Alvey Vision Conference. 147--151.]]
[54]
HarrisSrc. Harris Source Code. http://www.cs.uwa.edu.au/~pk/Research/MatlabFns/Spatial/harris.m.]]
[55]
Hausdorff, F. 1962. Set Theory. Chelsea, New York, NY.]]
[56]
Horn, B. and Schunk, B. 1981. Determining optical flow. Artific. Intell. 17, 185--203.]]
[57]
Huang, T. and Russell, S. 1997. Object identification in a bayesian context. In Proceedings of International Joint Conference on Artificial Intelligence. 1276--1283.]]
[58]
Hue, C., Cadre, J. L., and Prez, P. 2002. Sequential monte carlo methods for multiple targettracking and data fusion. IEEE Trans. Sign. Process. 50, 2, 309--325.]]
[59]
Huttenlocher, D., Noh, J., and Rucklidge, W. 1993. Tracking nonrigid objects in complex scenes. In IEEE International Conference on Computer Vision (ICCV). 93--101.]]
[60]
Intille, S., Davis, J., and Bobick, A. 1997. Real-time closed-world tracking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 697--703.]]
[61]
Irani, M. and Anandan, P. 1998. Video indexing based on mosaic representations. IEEE Trans. Patt. Analy. Mach. Intell. 20, 6, 577--589.]]
[62]
Isard, M. and Blake, A. 1998. Condensation - conditional density propagation for visual tracking. Int. J. Comput. Vision 29, 1, 5--28.]]
[63]
Isard, M. and MacCormick, J. 2001. Bramble: A bayesian multiple-blob tracker. In IEEE International Conference on Computer Vision (ICCV). 34--41.]]
[64]
Jain, R. and Nagel, H. 1979. On the analysis of accumulative difference pictures from image sequences of real world scenes. IEEE Trans. Patt. Analy. Mach. Intell. 1, 2, 206--214.]]
[65]
Javed, O., Rasheed, Z., Shafique, K., and Shah, M. 2003. Tracking across multiple cameras with disjoint views. In IEEE International Conference on Computer Vision (ICCV). 952--957.]]
[66]
Jensen, F. V. 2001. Bayesian Networks and Decision Graphs. Springer.]]
[67]
Jepson, A., Fleet, D., and ElMaraghi, T. 2003. Robust online appearance models for visual tracking. IEEE Trans. Patt. Analy. Mach. Intell. 25, 10, 1296--1311.]]
[68]
Joachims, T. 1999. Transductive inference for text classification using support vector machines. In International Conference on Machine Learning. 200--209.]]
[69]
KalmanSrc. Kalman Filtering Source Code. http://www.ai.mit.edu/~murphyk/Software/index.html.]]
[70]
Kanade, T., Collins, R., Lipton, A., Burt, P., and Wixson, L. 1998. Advances in cooperative multi-sensor video surveillance. Darpa IU Workshop. 3--24.]]
[71]
Kang, J., Cohen, I., and Medioni, G. 2003. Continuous tracking within and across camera streams. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 267--272.]]
[72]
Kang, J., Cohen, I., and Medioni, G. 2004. Object reacquisition using geometric invariant appearance model. In International Conference on Pattern Recongnition (ICPR). 759--762.]]
[73]
Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: active contour models. Int. J. Comput. Vision 1, 321--332.]]
[74]
Kettnaker, V. and Zabih, R. 1999. Bayesian multi-camera surveillance. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 117--123.]]
[75]
Khan, S. and Shah, M. 2003. Consistent labeling of tracked objects in multiple cameras with overlapping fields of view. IEEE Trans. Patt. Analy. Mach. Intell. 25, 10, 1355--1360.]]
[76]
KLTSrc. KLT Source Code. http://www.ces.clemson.edu/~stb/klt/.]]
[77]
Kockelkorn, M., Luneburg, A., and Scheffer, T. 2003. Using transduction and multiview learning to answer emails. In European Conference on Principle and Practice of Knowledge Discovery in Databases. 266--277.]]
[78]
Kuhn, H. 1955. The hungarian method for solving the assignment problem. Naval Research Logistics Quart. 2, 83--97.]]
[79]
Kumar, S. and Hebert, M. 2003. Discriminative random fields: A discriminative framework for contextual interaction in classification. In IEEE International Conference on Computer Vision (ICCV). 1150--1157.]]
[80]
Laws, K. 1980. Textured image segmentation. PhD thesis, Electrical Engineering, University of Southern California.]]
[81]
Lee, L., Romano, R., and Stein, G. 2000. Monitoring activities from multiple video streams: Establishing a common coordinate frame. IEEE Trans. Patt. Recogn. Mach. Intell. 22, 8 (Aug.), 758--768.]]
[82]
LevelSetSrc. Level Set Source Code. http://www.cs.utah.edu/~whitaker/vispack/.]]
[83]
Levin, A., Viola, P., and Freund, Y. 2003. Unsupervised improvement of visual detectors using co-training. In IEEE International Conference on Computer Vision (ICCV). 626--633.]]
[84]
Li, B., Chellappa, R., Zheng, Q., and Der, S. 2001. Model-based temporal object verification using video. IEEE Trans. Image Process. 10, 6, 897--908.]]
[85]
Liyuan, L. and Maylor, L. 2002. Integrating intensity and texture differences for robust change detection. IEEE Trans. Image Process. 11, 2, 105--112.]]
[86]
Lowe, D. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 2, 91--110.]]
[87]
Lucas, B. D. and Kanade., T. 1981. An iterative image registration technique with an application to stereo vision. In International Joint Conference on Artificial Intelligence.]]
[88]
MacCormick, J. and Blake, A. 2000. Probabilistic exclusion and partitioned sampling for multiple object tracking. Int. J. Comput. Vision 39, 1, 57--71.]]
[89]
MacKay, D. J. C. 1998. Introduction to Monte Carlo methods. In Learning in Graphical Models, M. I. Jordan, Ed. NATO Science Series. Kluwer Academic Press, 175--204.]]
[90]
Mallat, S. 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Patt. Analy. Mach. Intell. 11, 7, 674--693.]]
[91]
Mansouri, A. 2002. Region tracking via level set pdes without motion computation. IEEE Trans. Patt. Analy. Mach. Intell. 24, 7, 947--961.]]
[92]
Matthies, L., Szeliski, R., and Kanade, T. 1989. Kalman filter-based algorithms for estimating depth from image sequences. Int. J. Comput. Vision 3, 3, 209--238.]]
[93]
MeanShiftSegmentSrc. Mean-Shift Segmentation Source Code. http://www.caip.rutgers.edu/riul/research/code.html.]]
[94]
MeanShiftTrackSrc. Mean-Shift Tracking Source Code. http://www.intel.com/technology/computing/opencv/index.htm.]]
[95]
Mikolajczyk, K. and Schmid, C. 2002. An affine invariant interest point detector. In European Conference on Computer Vision (ECCV). Vol. 1. 128--142.]]
[96]
Mikolajczyk, K. and Schmid, C. 2003. A performance evaluation of local descriptors. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1615--1630.]]
[97]
Mittal, A. and Davis, L. 2003. M2 tracker: A multiview approach to segmenting and tracking people in a cluttered scene. Int. J. Comput. Vision 51, 3, 189--203.]]
[98]
Moeslund, T. and Granum, E. 2001. A survey of computer vision-based human motion capture. Comput. Vision Image Understand. 81, 3, 231--268.]]
[99]
Monnet, A., Mittal, A., Paragios, N., and Ramesh, V. 2003. Background modeling and subtraction of dynamic scenes. In IEEE International Conference on Computer Vision (ICCV). 1305--1312.]]
[100]
Moravec, H. 1979. Visual mapping by a robot rover. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 598--600.]]
[101]
Mughadam, B. and Pentland, A. 1997. Probabilistic visual learning for object representation. IEEE Trans. Patt. Analy. Mach. Intell. 19, 7, 696--710.]]
[102]
Mumford, D. and Shah, J. 1989. Optimal approximations by piecewise smooth functions and variational problems. Comm. Pure Appl. Mathemat. 42, 5, 677--685.]]
[103]
Murty, K. 1968. An algorithm for ranking all the assignments in order of increasing cost. Operations Resear. 16, 682--686.]]
[104]
Oliver, N., Rosario, B., and Pentland, A. 2000. A bayesian computer vision system for modeling human interactions. IEEE Trans. Patt. Analy. Mach. Intell. 22, 8, 831--843.]]
[105]
Oza, N. C. 2002. Online ensemble learning. PhD Thesis, University of California, Berkeley.]]
[106]
Papageorgiou, C., Oren, M., and Poggio, T. 1998. A general framework for object detection. In IEEE International Conference on Computer Vision (ICCV). 555--562.]]
[107]
Paragios, N. and Deriche, R. 2000. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Patt. Analy. Mach. Intell. 22, 3, 266--280.]]
[108]
Paragios, N. and Deriche, R. 2002. Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vision 46, 3, 223--247.]]
[109]
Park, S. and Aggarwal, J. K. 2004. A hierarchical bayesian network for event recognition of human actions and interactions. Multimed. Syst. 10, 2, 164--179.]]
[110]
ParticleFltSrc. Particle Filtering Source Code. http://www-sigproc.eng.cam.ac.uk/smc/software.html.]]
[111]
Paschos, G. 2001. Perceptually uniform color spaces for color texture analysis: an empirical evaluation. IEEE Trans. Image Process. 10, 932--937.]]
[112]
Rabiner, L. R. 1989. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77, 2, 257--286.]]
[113]
Rangarajan, K. and Shah, M. 1991. Establishing motion correspondence. Conference Vision Graphies Image Process 54, 1, 56--73.]]
[114]
Rasmussen, C. and Hager, G. 2001. Probabilistic data association methods for tracking complex visual objects. IEEE Trans. Patt. Analy. Mach. Intell. 23, 6, 560--576.]]
[115]
Collins, R. and Liu, Y. 2003. On-line selection of discriminative tracking features. In IEEE International Conference on Computer Vision (ICCV). 346--352.]]
[116]
Reid, D. B. 1979. An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24, 6, 843--854.]]
[117]
Rittscher, J., Kato, J., Joga, S., and Blake, A. 2000. A probabilistic background model for tracking. In European Conference on Computer Vision (ECCV). Vol. 2. 336--350.]]
[118]
Ronfard, R. 1994. Region based strategies for active contour models. Int. J. Comput. Vision 13, 2, 229--251.]]
[119]
Rosales, R. and Sclaroff, S. 1999. 3d trajectory recovery for tracking multiple objects and trajectory guided recognition of actions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 117--123.]]
[120]
Rowe, S. and Blake, A. 1996. Statistical mosaics for tracking. Israel Verj. Cap. J. 14, 549--564.]]
[121]
Rowley, H., Baluja, S., and Kanade, T. 1998. Neural network-based face detection. IEEE Trans. Patt. Analy. Mach. Intell. 20, 1, 23--38.]]
[122]
Salari, V. and Sethi, I. K. 1990. Feature point correspondence in the presence of occlusion. IEEE Trans. Patt. Analy. Mach. Intell. 12, 1, 87--91.]]
[123]
Sato, K. and Aggarwal, J. 2004. Temporal spatio-velocity transform and its application to tracking and interaction. Comput. Vision Image Understand. 96, 2, 100--128.]]
[124]
Schunk, B. 1986. The image flow constraint equation. Comput. Visison Graphics Image Process. 35, 20--46.]]
[125]
Schweitzer, H., Bell, J. W., and Wu, F. 2002. Very fast template matching. In European Conference on Computer Vision (ECCV). 358--372.]]
[126]
Serby, D., Koller-Meier, S., and Gool, L. V. 2004. Probabilistic object tracking using multiple features. In IEEE International Conference of Pattern Recognition (ICPR). 184--187.]]
[127]
Sethi, I. and Jain, R. 1987. Finding trajectories of feature points in a monocular image sequence. IEEE Trans. Patt. Analy. Mach. Intell. 9, 1, 56--73.]]
[128]
Sethian, J. 1999. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics Computer Vision and Material Sciences. Cambridge University Press.]]
[129]
Shafique, K. and Shah, M. 2003. A non-iterative greedy algorithm for multi-frame point correspondence. In IEEE International Conference on Computer Vision (ICCV). 110--115.]]
[130]
Shi, J. and Malik, J. 2000. Normalized cuts and image segmentation. IEEE Trans. Patt. Analy. Mach. Intell. 22, 8, 888--905.]]
[131]
Shi, J. and Tomasi, C. 1994. Good features to track. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 593--600.]]
[132]
SIFTSrc. SIFT Source Code. http://www.cs.ucla.edu/~vedaldi/code/siftpp/assets/siftpp/versions/.]]
[133]
Song, K. Y., Kittler, J., and Petrou, M. 1996. Defect detection in random color textures. Israel Verj. Cap. J. 14, 9, 667--683.]]
[134]
Stauffer, C. and Grimson, W. 2000. Learning patterns of activity using real time tracking. IEEE Trans. Patt. Analy. Mach. Intell. 22, 8, 747--767.]]
[135]
Stenger, B., Ramesh, V., Paragios, N., Coetzee, F., and Buhmann, J. 2001. Topology free hidden markov models: Application to background modeling. In IEEE International Conference on Computer Vision (ICCV). 294--301.]]
[136]
Stern, H. and Efros, B. 2002. Adaptive color space switching for face tracking in multi-colored lighting environments. In IEEE International Conference on Automatic Face and Gesture Recognition. 0249.]]
[137]
Streit, R. L. and Luginbuhl, T. E. 1994. Maximum likelihood method for probabilistic multi-hypothesis tracking. In Proceedings of the International Society for Optical Engineering (SPIE.) vol. 2235. 394--405.]]
[138]
Szeliski, R. and Coughlan, J. 1997. Spline-based image registration. Int. J. Comput. Vision 16, 1-3, 185--203.]]
[139]
Tanizaki, H. 1987. Non-gaussian state-space modeling of nonstationary time series. J. Amer. Statist. Assoc. 82, 1032--1063.]]
[140]
Tao, H., Sawhney, H., and Kumar, R. 2002. Object tracking with bayesian estimation of dynamic layer representations. IEEE Trans. Patt. Analy. Mach. Intell. 24, 1, 75--89.]]
[141]
Terzopoulos, D. and Szeliski, R. 1992. Tracking with kalman snakes. In Active Vision, A. Blake and A. Yuille, Eds. MIT Press.]]
[142]
Tieu, K. and Viola, P. 2004. Boosting image retrival. Int. J. Comput. Vision 56, 1, 17--36.]]
[143]
Tipping, M. E. 2001. Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Resear. 1, 1, 211--244.]]
[144]
Torralba, A. 2003. Contextual priming for object detection. Int. J. Comput. Vision 53, 2, 169--191.]]
[145]
Torresani, L. and Bregler, C. 2002. Space-time tracking. In European Conference on Computer Vision (ECCV). 801--812.]]
[146]
Toyama, K., J. Krumm, B. B., and Meyers, B. 1999. Wallflower: Principles and practices of background maintenance. In IEEE International Conference on Computer Vision (ICCV). 255--261.]]
[147]
Vapnik, V. 1998. Statistical Learning Theory. John Wiley NY.]]
[148]
Vaswani, N., RoyChowdhury, A., and Chellappa, R. 2003. Activity recognition using the dynamics of the configuration ofinteracting objects. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 633--640.]]
[149]
Veenman, C., Reinders, M., and Backer, E. 2001. Resolving motion correspondence for densely moving points. IEEE Trans. Patt. Analy. Mach. Intell. 23, 1, 54--72.]]
[150]
Vidal, R. and Ma, Y. 2004. A unified algebraic approach to 2-d and 3-d motion segmentation. In European Conference on Computer Vision (ECCV). 1--15.]]
[151]
Viola, P., Jones, M., and Snow, D. 2003. Detecting pedestrians using patterns of motion and appearance. In IEEE International Conference on Computer Vision (ICCV). 734--741.]]
[152]
Viterbi, A. J. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inform. Theory 13, 260--269.]]
[153]
Wang, J. and Adelson, E. 1994. Representing moving images with layers. IEEE Image Process. 3, 5, 625--638.]]
[154]
Wren, C., Azarbayejani, A., and Pentland, A. 1997. Pfinder: Real-time tracking of the human body. IEEE Trans. Patt. Analy. Mach. Intell. 19, 7, 780--785.]]
[155]
Wu, Z. and Leahy, R. 1993. An optimal graph theoretic approach to data clustering: Theory and its applications to image segmentation. IEEE Trans. Patt. Analy. Mach. Intell. 11, 1101--1113.]]
[156]
Xu, N. and Ahuja, N. 2002. Object contour tracking using graph cuts based active contours. In IEEE International Conference on Image Processing (ICIP). 277--280.]]
[157]
Yilmaz, A., Li, X., and Shah, M. 2004. Contour based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Patt. Analy. Mach. Intell. 26, 11, 1531--1536.]]
[158]
Yilmaz, A., Shafique, K., and Shah, M. 2003. Target tracking in airborne forward looking imagery. J. Image Vision Comput. 21, 7, 623--635.]]
[159]
Yu, S. X. and Shi, J. 2004. Segmentation given partial grouping constraints. IEEE Trans. Patt. Analy. Mach. Intell. 26, 2, 173--183.]]
[160]
Zhong, J. and Sclaroff, S. 2003. Segmenting foreground objects from a dynamic textured background via a robust kalman filter. In IEEE International Conference on Computer Vision (ICCV). 44--50.]]
[161]
Zhou, S., Chellapa, R., and Moghadam, B. 2003. Adaptive visual tracking and recognition using particle filters. In Proceedings IEEE International Conference on Multimedia and Expo (ICME). 349--352.]]
[162]
Zhu, S. and Yuille, A. 1996. Region competition: unifying snakes, region growing, and bayes/mdl for multiband image segmentation. IEEE Trans. Patt. Analy. Mach. Intell. 18, 9, 884--900.]]

Cited By

View all
  • (2025)IMAGE ENHANCEMENT IN INDUSTRIAL WELDING ENVIRONMENT WITH IMAGE PROCESSING TECHNIQUESKonya Journal of Engineering Sciences10.36306/konjes.143479713:1(238-259)Online publication date: 1-Mar-2025
  • (2025)An Overview of Deep Neural Networks for Few-Shot LearningBig Data Mining and Analytics10.26599/BDMA.2024.90200498:1(145-188)Online publication date: Feb-2025
  • (2025)A Reliable People Tracking in Nuclear Power Plant Control Room Monitoring System Using Particle FilterIEEE Transactions on Reliability10.1109/TR.2024.339293174:1(2041-2055)Online publication date: Mar-2025
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 38, Issue 4
2006
153 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/1177352
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 December 2006
Published in CSUR Volume 38, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Appearance models
  2. contour evolution
  3. feature selection
  4. object detection
  5. object representation
  6. point tracking
  7. shape tracking

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)912
  • Downloads (Last 6 weeks)127
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)IMAGE ENHANCEMENT IN INDUSTRIAL WELDING ENVIRONMENT WITH IMAGE PROCESSING TECHNIQUESKonya Journal of Engineering Sciences10.36306/konjes.143479713:1(238-259)Online publication date: 1-Mar-2025
  • (2025)An Overview of Deep Neural Networks for Few-Shot LearningBig Data Mining and Analytics10.26599/BDMA.2024.90200498:1(145-188)Online publication date: Feb-2025
  • (2025)A Reliable People Tracking in Nuclear Power Plant Control Room Monitoring System Using Particle FilterIEEE Transactions on Reliability10.1109/TR.2024.339293174:1(2041-2055)Online publication date: Mar-2025
  • (2025)Open World Object Detection: A SurveyIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2024.348069135:2(988-1008)Online publication date: 1-Feb-2025
  • (2025)Learnable Wireless Digital Twins: Reconstructing Electromagnetic Field With Neural RepresentationsIEEE Open Journal of the Communications Society10.1109/OJCOMS.2025.35359596(1568-1590)Online publication date: 2025
  • (2025)Benchmarking Vision-Based Object Tracking for USVs in Complex Maritime EnvironmentsIEEE Access10.1109/ACCESS.2025.353229913(15014-15027)Online publication date: 2025
  • (2025)SAILOR: perceptual anchoring for robotic cognitive architecturesScientific Reports10.1038/s41598-024-84071-215:1Online publication date: 2-Jan-2025
  • (2025)Using computer vision and street-level videos for pedestrian-vehicle tracking and behaviour analysisTransportation Research Interdisciplinary Perspectives10.1016/j.trip.2025.10136630(101366)Online publication date: Mar-2025
  • (2025)Facing Challenges: A Survey of Object TrackingDigital Signal Processing10.1016/j.dsp.2025.105082(105082)Online publication date: Feb-2025
  • (2025)Multi-core token mixer: a novel approach for underwater image enhancementMachine Vision and Applications10.1007/s00138-024-01651-y36:2Online publication date: 17-Jan-2025
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media