
An Intruder Model for Verifying Liveness
in Security Protocols

Jan Cederquist
Department of Computer Science

University of Twente
P.O. Box 217, 7500 AE Enschede

The Netherlands

Jan.Cederquist@cs.utwente.nl

Mohammad Torabi Dashti
Centrum voor Wiskunde en Informatica

P.O. Box 94079, NL-1090 GB Amsterdam
The Netherlands

Mohammad.Dashti@cwi.nl

ABSTRACT
We present a process algebraic intruder model for verifying
a class of liveness properties of security protocols. For this
class, the proposed intruder model is proved to be equivalent
to a Dolev-Yao intruder that does not delay indefinitely the
delivery of messages. In order to prove the equivalence, we
formalize the resilient communication channels assumption.
As an application of the proposed intruder model, formal
verification of fair exchange protocols is discussed.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol Verification; D.2.4 [Software Engi-
neering]: Software/Program Verification—Formal Methods,
Model Checking ; K.6.5 [Management of Computing and
Information Systems]: Security and Protection; F.3.1
[Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

General Terms
Security, Theory, Verification

Keywords
Intruder Models, Security Protocols, Liveness Properties,
Dolev-Yao Intruder

1. INTRODUCTION
Liveness aspects of security protocols, stipulating that

some desired situation eventually will occur, have only re-
cently found a role on the scene with the requirements emerg-
ing from electronic commerce applications. Fair payment,
certified email, non-repudiation and electronic contract sign-
ing protocols are typical examples of relevant applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMSE’06, November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-550-9/06/0011 ...$5.00.

(see e.g. [4, 27, 37]). These protocols all aim at a liveness re-
quirement, namely fair exchange of valuable electronic items
(money, signature, evidence etc).

The liveness requirements of fair exchange protocols clearly
cannot be achieved unless messages are eventually delivered
over (at least some) communication channels. However, a
communication channel that eventually delivers transmit-
ted messages (called a resilient channel [4]) deviates from
the de-facto standard model used in analyzing security pro-
tocols. Following the seminal work of Dolev and Yao [16],
the communication media are assumed to be under abso-
lute control of the intruder. This intruder can in particular
destroy transmitted messages.

We aim at automatic verification of liveness properties of
security protocols. To use the standard Dolev-Yao (DY)
intruder thus requires a fairness constraint that prevents
the intruder from disrupting communications over resilient
channels. Due to the complexity of such a fairness con-
straint, automatic verification of liveness properties in the
DY model seems to be very inefficient (as will be motivated
in this paper).

Checking liveness aspects of fair exchange protocols has
often been left out from formal analysis (see [1, 9, 26, 34]
for some notable studies). There are however at least two
reasons why it is crucial to check some liveness properties.
Let us refer to them as the “theoretical reason” and the
“pragmatic reason”. The theoretical reason is that fair ex-
change inherently contains a liveness property. This has also
been confirmed in practice as the non-termination flaws re-
ported in [7, 23, 35], respectively in protocols of [6, 37, 36],
would not have been found if liveness of participants had
been taken for granted. The pragmatic reason is that in
models of protocols certain behaviors might be missing or
differently represented in their realizations. In particular,
security protocols do in practice only have finite runs (e.g.
there are always time-out operations) and safety properties
(stating that undesirable states are not reachable) may seem
sufficient. However, in modeling security protocols, timing
aspects are usually abstracted away (see [30] for a survey).
For example, if a loop is mistakenly specified in Apache’s
rewrite module [19], theoretically there can be a livelock in
the server model that should be detected, even if the bo-
gus server is not in practice endlessly trapped. As another
example, a typical requirement for a fair exchange protocol
between Alice and Bob states that, if Alice receives a desired
item from Bob, then Bob will eventually receive his desired

23

item from Alice as well [4]. This is a liveness property that
does not hold in the protocol model if there is either a dead-
lock situation, such that Bob cannot progress after Alice has
got her item, or a livelock situation, such that Bob runs into
an endless execution (possibly maliciously devised to pre-
vent him to ever reach his goal). The latter situation sets
up a threat alarm, although the realization does not neces-
sarily contain a livelock, i.e. Bob at some point has to give
up the exchange in an unfair state.
Contributions In this paper we investigate the suitabil-
ity of the DY intruder model for automatic verification of
liveness properties under the resilient communication chan-
nels (RCC) assumption. First, we present a formalization of
RCC. This formalization cannot be expressed in linear tem-
poral logic (LTL [33]), which indicates that using RCC as
a fairness constraint1 in verifying liveness properties would
not be efficient. Therefore, we present a process algebraic
intruder model, restricted by a much simpler fairness con-
straint, that is proved to be equivalent to a DY intruder
that does not indefinitely delay the delivery of messages:
For an arbitrary protocol and a liveness property φ of the
general form “inevitable reachability of a particular action
in all fair traces”, we prove that if the DY intruder finds an
attack (counterexample) for the property, without violat-
ing the RCC assumption, then the proposed intruder model
can find a corresponding attack, and vice versa. For safety
properties, which do not require the RCC assumption, our
intruder model is equivalent to the DY intruder, modulo
action renaming. Finally, we illustrate how fair exchange
properties can be expressed in terms of φ and a few safety
properties, which can all be checked in the proposed intruder
model.
Structure of the paper Section 2 contains definitions
and notations that are used later in the paper. In section 3
we present a formalization of the RCC assumption. In sec-
tion 4 we propose an intruder model that is proved to be
equivalent to a DY intruder that respects the RCC assump-
tion. The equivalence proof is sketched in appendix A. As
an application of the proposed intruder, formal verification
of fair exchange protocols is discussed in section 5. Section 6
discusses some related work and section 7 concludes.

2. PRELIMINARIES
In this section we briefly recall general concepts and no-

tations used in the paper.

2.1 The µCRL Process Algebra
We use the process algebraic language μCRL [22], which

is an extension of ACP [10] with abstract data types, for
specifying protocols and intruders. Our results do not de-
pend however on this choice, as μCRL is similar to other
general purpose process algebras, such as CSP [25], and is
used here merely to provide a precise description of the pre-
sented specifications. A μCRL specification describes a la-
beled transition system (see section 2.2), in which states
represent process terms and edges are labeled with actions.
What follows only gives a brief description of μCRL, while
its complete syntax and semantics is given in [22].

1Two notions of fairness are used in this paper: fairness in
exchange (section 5) and fairness constraints of a labeled
transition system. The latter is used to describe “fair” exe-
cution traces.

In μCRL a specification consists of data type declarations
and process behavior definitions, where processes and ac-
tions can be parameterized with data. We assume the pres-
ence of a data sort Bool of booleans with constants T and F,
and the usual connectives ∧, ∨ and ¬.

The specification of a process is constructed from actions
belonging to a finite set Act which contains a deadlock ac-
tion δ (denoting that from then on, no action can be per-
formed) and a silent internal action τ , recursion variables
and process algebraic operators. Processes are represented
by process terms that describe the order in which actions
may happen. A process term consists of action names and
recursion variables combined by process algebraic operators.
The expressions p.q and p + q denote sequential composi-
tion and non-deterministic choice, respectively. In the in-
truder specifications (sections 4.2 and 4.3), the operator .
has the strongest precedence and + has the weakest. The
summation Σd:D p(d) provides the possibly infinite choice
over a data type D, and the conditional construct p � b � q,
with b a data term of sort Bool , behaves as p if b = T
and as q if b = F. The construct Σd:D p(d) � f(d) � δ,
used in section 4, with f being a Boolean function of d,
forces the choice of d values that satisfy f . The parallel
composition p‖q interleaves the actions of p and q. More-
over, actions from p and q may synchronize (p|q), when this
is explicitly allowed by a predefined partial synchronization
function | : Act × Act → Act . However, two actions can
only synchronize if their data parameters are semantically
the same, which means that synchronization can be used to
represent data transfer between processes. Encapsulation
∂H(p), which renames all occurrences of actions from the
set H in p into the deadlock action δ, can be used to force
actions into communication.

2.2 Labeled Transition Systems
A labeled transition system (LTS) L is a tuple (S, s0, Act ,

Tr), where S is a finite set of states, s0 ∈ S is the initial
state, Act is a finite set of actions, and Tr ⊆ S ×Act × S is
the transition relation. A transition (s, a, s′) ∈ Tr , denoted

s
a→ s′, indicates that the system can move from state s to

s′ by taking action a.
A sequence is a function α : I → A, where A is a finite

set and the index set I is either {0, . . . , n − 1} (for finite
sequences of length n) or the natural numbers Nat (for infi-
nite sequences). When I = {0, . . . , n − 1}, the notation I+

is used to refer to {0, . . . , n}. When I is Nat , then I+ = I .
The notation αi stands for the application α i.

A trace in L is a sequence of transitions α : I → Tr for
which there is a sequence of states σα : I+ → S such that
σα

0 = s0 and ∀i ∈ I, ∃a ∈ Act . αi = σα
i

a−−→σα
i+1. We loosely

use αi and its corresponding action interchangeably.
A sequence of states σ : I → S in L gives rise to a sequence

of sets of enabled transitions σ̂ : I → 2Tr defined as σ̂i =
en(σi), where en(s) is the set of transitions that are enabled
in s: en(s) = {(s, a, s′)|s a−−→ s′}.

A finite trace α is called a deadlock trace iff σ̂α
|I| = ∅

(where |I | is the cardinality of I).
In modeling, a desired property is sometimes violated only

due to unrealistic behaviors in the model that do not reflect
the actual system under study. In this case fairness con-
straints are used to rule out such behaviors, cf. [21]. A
fairness constraint states whether a given trace of the model
reflects an acceptable (or realistic) execution of the system

24

or not. Unacceptable traces are then excluded from subse-
quent (formal) analysis [21]. We are now ready to define
a fairness constraint for LTSs, informally stating that no
possibilities are excluded forever.

Definition 1. A trace α : I → Tr in an LTS L =
(S, s0,Act ,Tr) is fair2 iff, for each θ ∈ Tr, if {i ∈ I | θ ∈
σ̂α

i } is infinite then so is {i ∈ I | θ = αi}.

Note that finite traces are always fair.

2.3 Modeling a Protocol
This section describes how we model protocols and intrud-

ers.
We consider an asynchronous communication model with

no global clock. A security protocol P is modeled as an asyn-
chronous composition of a finite number of finitely-branching
non-deterministic processes with names. These processes
model the roles of participants in the protocol. Processes
communicate by sending and receiving messages.

A message is a pair m = 〈p, c〉, where p is the identity
of the intended receiver process and c is the content of the
message. We let Msg be the set of all message contents that
can be communicated (for a recursive formalization of Msg
see e.g. [32]). Messages are exchanged via a communication
network net , which is also seen as a process (equipped with
some internal buffer), that is external to P . We overload P
to denote also the set of processes which constitute it.

To send or receive a message m, an agent p ∈ P performs
the actions send(p,m) or recv(p, m), respectively. Even
though an agent p sends the message m with the intention
that it should be received by an agent q, it is in fact the
network (the process net) that receives the message from p,
and it is from the network that q can receive m. For each
message dispatched to net we define a corresponding deliv-
ery as send(p, 〈q, c〉) = recv(q, 〈q, c〉)3. The communica-
tions between protocol participants and net are assumed to
be synchronized (see section 2.1), meaning that p can send
a message m to net iff at the same time net can receive m
from p, and similarly for recv. The communication between
participants of a protocol via net is however asynchronous
and a participant has no guarantees about the origins of the
messages it receives.

Apart from send and recv, all other actions of processes
in P are considered internal (as in [22]), i.e. do not involve
any process outside P . We assume that each protocol per-
forms two specific internal actions i and t that are used to
express a certain liveness goal of the protocol. These ac-
tions are abstract and no semantics is attributed to them.
All other internal actions of processes in P are considered
silent (represented by τ), i.e. do not appear in the prop-
erty being verified. These can denote, for instance, internal
decisions or communications between protocol participants
through secure channels.

To model an intruder that has complete control over the
network, we assume that it plays the role of the network.
The intruder may thus schedule messages and possibly insert
its own messages into the network. Besides being the net-

2This corresponds to the strong notion of fairness in [21]:
∀θ ∈ Tr . F∞ enabled(θ) ⇒ F∞ executed(θ).
3Using q redundantly in recv(q, 〈q, c〉) ensures that the pa-
rameters of send and recv actions are semantically the
same.

work, the intruder can also have roles in protocols (which is
required, for instance, in modeling fair exchange protocols).

The merit of using synchronous communication between
P and net (played by the intruder) is that the intruder does
not try to compose messages which P does not accept, sim-
ply because synchronizations with the corresponding actions
of P would fail. This allows us to define the (infinite) set
Msg of possible messages recursively, and still be able to
specify a generic intruder model whose specification does
not depend on the protocol being analyzed.

In this paper, we study LTSs L that result from the in-
teractions between an intruder and a protocol P , i.e. L =
(P‖net). Each state of such an L corresponds to the Carte-
sian product of the states of the intruder and of P .

2.4 Safety, Liveness and the DY Intruder
Properties of systems can usually be divided into two

classes: safety properties (something bad will never hap-
pen) and liveness properties (something good will eventu-
ally happen). For formal definitions of safety and liveness
we refer to [3]. When verifying liveness, fairness constraints
usually have to be imposed on the model to rule out unre-
alistic executions [21]. The notation L |=F φ is used here
to represent that the liveness property φ holds in an LTS L
under fairness constraint F .

Most security requirements are encoded as safety proper-
ties. Secrecy, for instance, can usually be expressed as “a
secret item is never revealed to an outsider”. These prop-
erties of security protocols are often verified using the DY
intruder model [16]. The DY intruder has complete control
over the network. It intercepts and remembers all messages
that have been transmitted. It can decrypt, encrypt and
sign messages, if it knows the corresponding key. It can de-
compose, compose and send new messages from its knowl-
edge. It can also remove or delay messages in favor of others
being communicated. The DY model is the most powerful
intruder under the perfect cryptography assumption [13].

As an instance of liveness requirements one can think of
fair exchange requirements, a topic to which we will return
in section 5. Liveness properties do not hold in general in
the presence of the DY intruder, as it can deliberately dis-
rupt all communications. To verify liveness properties, the
DY intruder model should be modified to respect the re-
silient communication channels (RCC) assumption4, i.e. the
behaviors of the model that violate RCC should be excluded.
To verify a liveness property φ for a protocol P in this model,
we thus need to decide (P‖DY) |=RCC φ.

3. FORMALIZING THE RCC
ASSUMPTION

The resilient communication channels (RCC) assumption
informally states that all messages transmitted over a re-
silient network, i.e. over an arbitrary topology of resilient
channels, will eventually reach their destinations5. No (non-
trivial) liveness property of protocols can be guaranteed in

4As a side note, a DY intruder that respects RCC is more
powerful (as in [13]) than the intruders that are often used
in verifying wireless protocols (e.g see [5]), i.e. those which
cannot delay or block messages, but can eavesdrop and inject
self-fabricated messages.
5We study this asymptotic behavior since no time bound is
then forced on the intruder. It can delay messages for any
finite amount of time.

25

general without the RCC assumption (for a list of protocols
assuming RCC see e.g. [27]). This is a consequence of the
impossibility of distributed consensus with one faulty pro-
cess [20]. Besides, a resilient network can be realized using
unreliable links [8], under reasonable assumptions.

We make the following choices when formalizing RCC:

C1. A resilient network not only delivers all transmitted
messages, but is also infinitely often ready to receive
messages.

C2. A resilient network may “destroy” a message only when
it would not be accepted by its recipient in any future
point of time6.

C3. A finite version of RCC is considered: For a given
n ∈ Nat , a network that realizes RCCn (called an
RCC n network) guarantees that, if the message is sent
n′ times to the network, then it will eventually deliver
min(n, n′) instances intact to its destination (if the
message has a recipient).

Clearly, RCC n is a weaker constraint than RCC, since it
accepts more behaviors. In fact, for each n, it is easy to come
up with a protocol P and a liveness property φ such that
(P‖net) |=RCC φ and (P‖net) �|=RCCn φ. Nevertheless, by
assuming RCC n when checking liveness properties we are on
the safe side, since if a liveness property holds in an RCC n-
network, it also holds in any RCCm-network for m ≥ n.
Pushing this idea further, to simplify our formalization7 we
use RCC 1 from this point on.8

3.1 Formalizing RCC 1 Networks
Consider a protocol P running in an RCC 1-network net ,

i.e. (P‖net). We define what it means for net (played by the
intruder) to respect RCC 1, by defining a fairness constraint.

Compared to the notion of fairness in definition 1, RCC 1

is a weaker constraint because it allows executions that in-
definitely ignore the delivery of a message that has not been
transmitted to net after the last delivery of that particu-
lar message. In the definition of this fairness constraint we
should thus make sure that when the intruder plays the role
of the network, under RCC, it will never be forced9 to send
any intruder-fabricated message.

Below we characterize the set of actions an RCC 1-network
should “treat in a fair way”. This set is smaller than en(s),
used in definition 1. It includes all send actions (C1 in sec-
tion 3), all recv actions that are not equal to any pending
6This may seem to introduce some spurious behav-
iors in the system. For instance consider two pro-
cesses p and q communicating on a network, specified
as: p = i.send(p, 〈q, m1〉).send(p, 〈q, m2〉).δ and q =
recv(q, 〈q, m2〉).recv(q, 〈q, m1〉).t.δ. One might expect that
action t does not happen due to the mismatch in these spec-
ifications. In a real network, however, the messages from p
can be shuffled such that q can reach t. This shuffling is also
allowed in our model, considering it as a consequence of the
asynchronous communication model.
7Modeling an RCC-network in general would require push-
down automata to track received and subsequently delivered
messages, whereas RCC 1 conceptually corresponds to finite
automata.
8Confining to RCC 1 comes to terms with practice as it is
not advised to use the same message for different purposes
in a protocol [2].
9Note that “forcing the intruder” only arises in modeling,
e.g. by ignoring other possible behaviors of the model.

send (C2) and finally all internal actions of protocol partic-
ipants.

In the following definitions we let (P‖net) be represented
by L = (S, s0,Act ,Tr). The sequence of sets of transitions
that should be treated in a fair way is defined as follows:

Definition 2. Let α : I → Tr be a trace of L. The se-
quence σ̌α : I+ → 2Tr is defined as σ̌α

i = σ̂α
i \Θα

i , where Θα
i

is the set of non-pending recv actions:

Θα
i = {recv(q, 〈q, c〉) ∈ σ̂α

i |
∃j < i, p ∈ P.αj = send(p, 〈q, c〉) ⇒

∃l ∈ I.j < l < i ∧ αl = αj}.

Note that σ̌ is defined for a particular trace. Whether a
transition, enabled in a certain state, is required by RCC 1

or not, depends in general on the trace taken to reach that
state. Now we can define the traces that are fair according
to RCC 1:

Definition 3. An infinite trace α : I → Tr belonging
to L is called RCC-fair iff, for all θ ∈ Tr, if {i ∈ I | θ ∈ σ̌α

i }
is infinite then so is {i ∈ I | θ = αi}. A finite trace α
belonging to L is RCC-fair iff α is a deadlock trace.

This definition characterizes a weaker notion of fairness con-
straint compared with definition 1, simply because σ̌α

i ⊆ σ̂α
i .

3.2 Formalizing RCC 1 in Presence of the DY
Intruder

In section 3.1 we implicitly assumed that a communica-
tion network would not permanently stop operating. We
relax this assumption in this section since the DY intruder
can take down the communication network at any moment.
However, this should only be allowed in certain situations.
Intuitively, the intruder may block the network only if there
is nothing to receive from other processes (C1), and if all
messages that it received earlier, to which there eventually
will be a recipient in the protocol, have already been sent
(C2). In our formalization we assume, without lack of gen-
erality, that an internal action κ occurs before the intruder
permanently blocks the communication media. This sym-
bolic action is used in the formalization of RCC 1:

Definition 4. A trace α : I → Tr respects RCC 1 in L
iff α is RCC-fair and

∀i ∈ I.
αi = κ ⇒
¬∃p, q ∈ P, c ∈ Msg .

send(p, 〈q, c〉) ∈ en∗(σα
i) ∧

∃p, q ∈ P, c ∈ Msg , j < i.
(recv(q, 〈q, c〉) ∈ en∗(σα

i) ∧
αj = send(p, 〈q, c〉)) ⇒
∃k.j < k < i ∧ αk = αj ,

where en∗(s) = ∪
s

τ→∗s′en(s′) and
τ→∗ is the reflexive transi-

tive closure of
τ→.

The set en∗(s) characterizes the transitions that the pro-
cesses of P can perform after an arbitrary number of internal
actions.

From the security point of view it is notable that, if the DY
intruder receives a message m = 〈q, c〉 from p, and manages
to instead send to q the message m′ �= m such that in the

26

resulting state s, recv(q, m) �∈ en∗(s), then RCC does not
prevent the intruder from never sending m.

The following lemma states that the formalization of RCC
is not expressible in LTL. It is thus questionable whether it
can readily be used as fairness constraint in efficient verifi-
cation.

Lemma 1. RCC is not expressible in LTL.

Proof: We give two witness LTSs that are indistin-
guishable for LTL10, but not for RCC:

L1 = {s0
τ−−→ s1, s1

κ−−→ s2, s1
send−−−−→ s3}

L2 = {s0
τ−−→ s1, s0

τ−−→ s2, s1
κ−−→ s3, s2

send−−−−→ s4}

4. AN INTRUDER FOR VERIFYING
LIVENESS PROPERTIES

We consider an arbitrary protocol P with a liveness prop-
erty φ of the general form “if a certain action i happens,
another action t will eventually happen” (formalized in sec-
tion 4.2). Although φ does not comprise all possible liveness
properties, it notably covers those appearing in fair exchange
protocols. Our goal is to verify whether (P‖DY) |=RCC φ.
But, the formalization of RCC as a fairness constraint (def-
inition 4) is not expressible in LTL (lemma 1). In order to
efficiently check φ under the RCC assumption, we need to
express the fairness constraint in the infinitary fragment of
LTL [18]11. We therefore chose to modify the DY intruder
model to I† such that

(P‖DY) |=RCC φ ≡ (P‖I†) |=F φ,

where the fairness constraint F is indeed expressible in in-
finitary LTL.

The intruder model I† is presented in section 4.3 and we
study the relation between the LTSs resulting from (P‖DY)
and (P‖I†) in section 4.4.

4.1 Regular alternation-free μ-calculus
In order to formulate properties of states in LTSs, we use

the regular alternation-free μ-calculus, which is a fragment
of μ-calculus that can efficiently be model-checked [29]. We
now briefly present the relevant part of this logic (for a com-
plete treatment of its syntax and semantics, we refer to [29]).
This logic consists of regular formulas and state formulas.

Regular formulas, which describe sets of execution traces,
are built upon action formulas and the standard regular ex-
pression operators. We use ·, ∨, ¬ and ∗ for concatenation,
choice, complement and transitive-reflexive closure of regu-
lar formulas, respectively.

State formulas, expressing properties of states, are built
upon propositional variables, standard boolean operators,
the possibility modal operator 〈· · · 〉, the necessity modal
operator [· · ·] and the minimal and maximal fixed point op-
erators μ and ν. The operator 〈· · · 〉 is used in the form

10To interpret LTL formulas, which are originally defined for
Kripke structures, on LTSs each state is assigned with the
labels of the transitions that sprout out of the state. For a
formal treatment of such interpretations see [31].

11Note that φ under the RCC constraint is expressible in
CTL∗ [17], but with a fairness constraint in infinitary LTL,
it would fall into FCTL [18] that can be checked more effi-
ciently than CTL∗.

〈R〉T to express the existence of an execution of the model
for which the regular formula R holds, and [· · ·] is used in
the form [R] to quantify over all executions of the model in
which the regular formula R holds. A state satisfies μX.f iff
it belongs to the minimal solution of the fixed point equa-
tion X = f(X), with f being a state formula and X a set
of states.

The symbol T is used in both action formulas and state
formulas. In action formulas it represents any action and in
state formulas it denotes the entire state space. The wild-
card action parameter represents any parameter of an ac-
tion.

4.2 Specification
The Dolev-Yao intruder DY is seen here as a non-deter-

ministic process which exhaustively tries all possible sequen-
ces of actions. It can, in particular, deliberately terminate
(by performing κ), which corresponds to taking the network
permanently down:

DY (X) =∑
c∈Msg,p,q∈P

recvI(p, 〈q, c〉).DY ({c} ∪ X) +

∑
c∈Msg,p∈P

sendI(p, 〈p, c〉).DY (X)

�synth(c, X) � δ +

κ.δ

Above, the set X of messages represents the (knowledge)
state of the intruder, Msg is the (infinite) set of possible
messages, and the function synth : Msg → 2Msg → Bool
characterizes the ability of the DY intruder to compose new
messages from its knowledge (cf. section 2.4). For an induc-
tive formalization of synth we refer to [32]12. Note that the
equivalence results in section 4.4 do not depend however on
synth .

Suppose that the intruder starts with the initial knowledge
X = K0 and the protocol starts in the initial state P0. We

define LA
def
= (SA, s0A,Act ,TrA) as the LTS described by

∂Δ(P (P0)‖DY (K0)).
We assume that the processes in P perform sendP and

recvP for sending and receiving messages, respectively. We
let Δ = {sendI , recvI , sendP , recvP } and force the mem-
bers of Δ to synchronize as

sendI |recvP = recv
recvI |sendP = send.

In the previous sections we assumed that processes perform
send and recv for sending and receiving actions. Here we go
a step further and make the intruder explicit in the model.

Finally the liveness property φ is expressed as

φA
def
= [T∗ · i] μX.(〈T〉T ∧ [¬t]X),

i.e. for each i action there is a (not necessarily unique) t
action coming later.13 Then we say there is an attack in
system A iff LA �|=RCC φA.

12To be precise, synth corresponds to Paulson’s
synth o analz [32].

13Thinking of i and t as state properties that hold where the
corresponding actions are executed, φA can be expressed in
LTL as φA = G(i ⇒ F t).

27

4.3 Implementation
In our intruder I†, besides using the set X of messages, we

also use another set Y , containing the messages that have
been received but not yet sent by the intruder.14 Another
send action, send†

I , for sending messages not belonging to Y ,
is used to detect and avoid any excessive (i.e. not required
by RCC) collaboration by the intruder. The intruder I† is
modeled as

I†(X, Y) =∑
m∈Msg,p,q∈P

recvI(p, 〈q, c〉).
I†({c} ∪ X, {〈q, c〉} ∪ Y) +∑

c∈Msg,p∈P

sendI(p, 〈p, c〉).I†(X, Y \ {〈p, c〉})
�〈p, c〉 ∈ Y � δ +∑

c∈Msg,p∈P

send†
I(p, 〈p, c〉).I†(X, Y)

�synth(c, X) ∧ 〈p, c〉 �∈ Y � δ.

The sets X and Msg , and the function synth are the same
as in section 4.2. The intruder starts with initial knowledge
X = K0, Y = ∅ and the protocol starts in its initial state P0.

We let LB
def
= (SB , s0B ,Act ,TrB) be the LTS described by

∂
Δ∪{send

†
I
}(P (P0)‖I†(K0, ∅)).

As earlier, a fairness constraint is needed to restrict the
behavior of the intruder. In particular, the intruder has to
be fair when it comes to send actions and to sending mes-
sages (stored in set Y) that it received earlier but did not yet
deliver to their intended recipient (see section 3). Implicitly,
the intruder will also be fair on the protocol’s internal ac-
tions, since it cannot control them. The only actions it does
not need to treat in a fair way are the recv† actions, i.e.
sending composed messages that it did not receive or that it
did receive but delivered afterward. The fairness constraint
can thus be expressed as “no possibilities, except for recv†

actions, may be excluded forever”. This constraint belongs
to infinitary LTL and it can easily be combined with the
property φA (in section 4.2) and expressed in the the regu-
lar alternation-free fragment of μ-calculus:

φB
def
= [T∗ · i · (¬t)∗]〈(¬recv†())∗ · t〉T

The intuitive meaning of φB is, whenever i has happened
but t has not (yet) occurred, there is an execution path
to t that does not contain any recv† actions. The intruder
is thus not forced to collaborate more than delivering re-
ceived messages. This means that those traces which con-
tain recv† actions are either witnesses of attacks or excluded
from successful runs. An attack in system B corresponds to
LB �|= φB .

4.4 Equivalence
The two systems, A and B, presented in sections 4.2

and 4.3 have different intruder models and use different fair-
ness constraints. In system A the fairness constraint is a
formalization of RCC, while for system B it is embedded
in φB. It is far from obvious whether these systems are
equivalent. The following theorem, which is the main result
of this paper, states that when verifying a liveness property
of the form φ then there is an attack in system A iff there
is a corresponding attack in system B.

14For providing RCCn, n > 1, Y can be modeled as a multi-
set.

Theorem 1. For any protocol P ,

(P‖DY) |=RCC φA ≡ (P‖I†) |= φB .

A proof sketch of this theorem is presented in appendix A.
When checking safety properties, one can ignore the abil-

ity of the DY intruder to do κ.δ actions (see section 4.2).
The intuition behind this is that the intruder does not gain
anything by quitting the protocol. This is obvious since
safety attacks are finite traces. The intruder DY without
κ.δ is thus equivalent to the intruder I , modulo renaming
send†

I to sendI actions. Hence, the LTSs resulting from
the interactions between an arbitrary protocol with these
two intruder models are isomorphic under renaming. The
following theorem articulates this observation. (the formal-
ization and proof are omitted).

Theorem 2. If there is a safety attack for a protocol in
system A, then there is a corresponding safety attack for the
protocol in system B, and vice versa.

4.5 Discussions
We end this section with a discussion of some features and

limitations of the intruder model I†.
As is mentioned earlier, theorem 1 relies on the finiteness

of the LTSs resulting from the interaction between a proto-
col and the intruder models. This poses some limitations:
First, only a finite number of actual protocol sessions can be
considered. To be precise, protocol participants cannot be
provided with unbounded sources of fresh data. They can
only run a finite number of protocol sessions and then either
terminate or turn into puppet participants (as in [14]), which
loop without generating new data. This restriction cannot
be easily lifted in automatic verification techniques, since
security of protocols in general is undecidable (see e.g. [15]).
Second, if there are processes in the protocol with loops
in their specifications, then the intruder cannot in general
be provided with unbounded sources of new data (such as
fresh nonces). In fact, trusted parties are often looping par-
ticipants that perpetually resolve incoming requests in op-
timistic fair exchange protocols [4]. As another example, a
vendor selling a finite number of items, that waits for a pur-
chase request, handles it and recurs, can also be modeled as
a looping participant. Whether the intruder can have ac-
cess to an unbounded number of fresh data and still yield
a finite state space, in the presence of looping participants,
depends on the protocol being analyzed. In [12] it can, but
not in [11].

Finally, we observe that usually only some of the channels
in a communication network need to be resilient in order to
achieve liveness. One way to implement this in system B is
to add another set Z, characterizing messages which should
be added to the buffer (set Y) of resilient channels. The only
notable change in the specification of I†(X, Y) would then
be in the first sum (the receiving part) that would become
(cf. section 4.3)∑

c∈Msg,p,q∈P

recvI(p, 〈q, c〉).I†({c} ∪ X, {〈q, c〉} ∪ Y)

�(p, 〈q, c〉) ∈ Z�

recvI(p, 〈q, c〉).I†({c} ∪ X, Y).

The set Z does not necessarily need to specify contents of
messages. Instead, the source or destination could be used,
as it usually characterizes communications between honest
participants and a trusted entity (see [12] for an example).

28

5. VERIFYING FAIR EXCHANGE
PROTOCOLS

Assume a two-party (Alice and Bob) fair exchange proto-
col (multi-party protocols have similar requirements). When
the protocol starts, both parties have an item. The purpose
is to have Alice and Bob exchange their items such that the
following properties hold [4]: First, if both parties behave
according to the protocol and none of them aborts during
the protocol round, then the protocol round terminates in a
state where Alice has Bob’s item and vice versa (effective-
ness). Second, upon termination, either Alice has received
Bob’s item and Bob has received Alice’s item, or none of the
parties have lost their items (fairness). Third, each proto-
col round terminates for all parties that behave according
to the protocol, and after the termination points the degree
of achieved fairness will not change (timeliness). Note that
timeliness contains a liveness property, namely the eventual
termination of the protocol. To sum up, fair exchange re-
quirements can be split into a safety part and a liveness part,
and the safety requirements becomes meaningful only when
the protocol is known to terminate.

A concern of a fair exchange protocol is to protect an
honest party from possible malicious behavior of the other
one. Therefore, when verifying fair exchange, the intruder
is a legitimate, though malicious, principal of the protocol.
Note that the fairness constraints introduced in sections 4.2
and 4.3 do not rule out any (malicious) behavior of the in-
truder as a protocol principal. In particular, the intruder
can prematurely abort the protocol as a principal, while be-
ing forced to play the role of the network.

The termination requirement mentioned above can be ex-
pressed in the form of the liveness property φ (in section 4),
where the actions i and t of an agent correspond to the
engagement and termination, respectively, of a protocol ses-
sion. Thus, according to theorems 1 and 2 both the safety
and the liveness parts of fair exchange requirements can be
checked in the proposed intruder model and inferred to hold
in the DY model that respects the RCC 1 assumption:

Corolary 1. A fair exchange property holds in system A
iff it holds in system B.

6. RELATED WORK
We now review some notable work in formal analysis of

fair exchange protocols and compare them to our work.
The liveness aspects of fair exchange are verified in [28, 23,

11]. In the former [28], a game-based semantics for fair ex-
change properties is presented, neatly expressing desired be-
haviors of fair exchange protocols. In [23] the SHVT toolset
is used in verifying non-repudiation protocols. They reveal,
in particular, a non-termination attack on the ZDB proto-
col [37]. In our terminology, both [28, 23] study the system
(P‖DY ‖net), i.e. the intruder is separated from the net-
work. What is gained is that enforcing RCC on net then
simply boils down to applying the fairness constraint of def-
inition 1. However, given the ability of the DY intruder
to generate an infinite set of messages from any non-empty
knowledge set, they need to constructively specify the set of
messages passed in the protocol, as opposed to our recursive
(similar to [32]) definition. Their intruder models are thus
dependent on the protocol being analyzed and a predefined
finite set of possible messages has to be manually antici-
pated. This in general defies the purpose of formal verifi-

cation, that is to reason beyond human anticipation. Our
work can be seen as extending the intruder model of [28] to
a generic intruder.

The work in [11] reports an implementation of the intruder
model I† for analyzing a fair non-repudiation protocol.

In [26] a constraint solving approach is adopted to ana-
lyze finite rounds of contract signing protocols, while the
intruder is provided with unbounded fresh data. Instead of
resilient channels, they use synchronous authenticated secret
channels, thus considerably restricting the intruder’s abili-
ties. Protocol participants are modeled as acyclic graphs
in [26]. The liveness aspects of fair exchange requirements
then naturally disappear and the resulting safety properties
are shown to be decidable, under certain conditions. In con-
trast, our results (and also the results of [28]) are stated
for an arbitrary protocol that can possibly contain looping
participants, provided that the interaction between the pro-
tocol and the DY intruder results in a finite state space (see
section 4.5 for more discussions). The analyses presented
in [28, 23, 11] do not capture type flaw attacks15. Remark-
ably, these attacks are possible to detect in [26].

7. CONCLUSIONS
In this paper we studied some concurrency issues regard-

ing the Dolev-Yao (DY) intruder model which arise when
verifying liveness properties. A liveness property does not
hold in general in this model without the resilient communi-
cation channels (RCC) assumption. We have given a formal-
ization of RCC, whose complexity indicates that the stan-
dard DY intruder, obliged to respect RCC, is not suitable for
automatic verification. We have thus proposed a modified
DY intruder model that respects RCC and fits in the ex-
isting verification frameworks. The fact that the proposed
intruder model can be implemented in a general purpose
process algebra equips us with already well developed tools
and techniques for modeling and verification.

Acknowledgments
We are grateful to Ana Almeida Matos, Ricardo Corin, Cas
Cremers, Sandro Etalle, Wan Fokkink and Pieter Hartel for
discussions and their helpful comments.

8. REFERENCES
[1] M. Abadi and B. Blanchet. Computer-assisted

verification of a protocol for certified email. In SAS
’03, volume 2694 of LNCS, pages 316–335, 2003.

[2] M. Abadi and R. Needham. Prudent engineering
practice for cryptographic protocols. IEEE Trans.
Software Eng., 22(1):6–15, 1996.

[3] B. Alpern and F. Schneider. Defining liveness.
Technical Report TR 85-650, Dept. of Computer
Science, Cornell University, October 1984.

[4] N. Asokan. Fairness in electronic commerce. PhD
thesis, Univ. Waterloo, 1998.

[5] N. Asokan and P. Ginzboorg. Key agreement in ad
hoc networks. Computer Communications,
23(17):1627–1637, 2000.

15A type-flaw attack happens when a field in a message that
was originally intended to have one type is interpreted as
having another type. Type-flaw attacks have been shown to
be easy to prevent [24].

29

[6] N. Asokan, V. Shoup, and M. Waidner. Asynchronous
protocols for optimistic fair exchange. In IEEE Symp.
on Security and Privacy. IEEE CS, 1998.

[7] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair
exchange of digital signatures. IEEE J. Selected Areas
in Communications, 18(4):593–610, 2000.

[8] A. Basu, B. Charron-Bost, and S. Toueg. Simulating
reliable links with unreliable links in the presence of
process crashes. In WDAG ’96, volume 1151 of LNCS,
pages 105–122. Springer, 1996.

[9] G. Bella and L. C. Paulson. Mechanical proofs about
a non-repudiation protocol. In TPHOL’01, volume
2152 of LNCS, pages 91–104. Springer, 2001.

[10] J. Bergstra and J. Klop. Algebra of communicating
processes with abstraction. Theor. Comput. Sci.,
37:77–121, 1985.

[11] J. Cederquist, R. Corin, and M. Torabi Dashti. On the
quest for impartiality: Design and analysis of a fair
non-repudiation protocol. In ICICS’05, volume 3783 of
LNCS, pages 27 – 39. Springer, 2005.

[12] J. Cederquist and M. Dashti. Formal analysis of a fair
payment protocol. In Formal Aspect of Security and
Trust, volume 173 of IFIP, pages 41–54. Springer,
2004.

[13] I. Cervesato. The Dolev-Yao intruder is the most
powerful attacker. In LICS’01. IEEE Computer
Society Press, 16–19 June 2001.

[14] Y. Chevalier and L. Vigneron. Automated unbounded
verification of security protocols. In CAV ’02, volume
2404 of LNCS, pages 324–337. Springer, 2002.

[15] H. Comon and V. Shmatikov. Is it possible to decide
whether a cryptographic protocol is secure or not? J.
of Telecommunications and Information Technology,
4:3–13, 2002.

[16] D. Dolev and A. Yao. On the security of public key
protocols. IEEE Trans. on Information Theory,
IT-29(2):198–208, 1983.

[17] E. Emerson. Temporal and modal logic. In J. van
Leeuwen, editor, Handbook of theoretical computer
science (vol. B): formal models and semantics, pages
995–1072. MIT Press, 1990.

[18] E. Emerson and C-L. Lei. Temporal reasoning under
generalized fairness constraints. In STACS ’86, pages
21–36. Springer-Verlag, 1985.

[19] R. Engelschall. URL rewriting engine. Apache HTTP
Server Version 1.3.

[20] M. Fischer, N. Lynch, and M. Paterson. Impossibility
of distributed consensus with one faulty process. J.
ACM, 32(2):374–382, 1985.

[21] N. Francez. Fairness. Springer, 1986.

[22] J. F. Groote and A. Ponse. The syntax and semantics
of μCRL. In Algebra of Communicating Processes,
Workshops in Computing Series, pages 26–62.
Springer, 1995.

[23] S. Gürgens, C. Rudolph, and H. Vogt. On the security
of fair non-repudiation protocols. In ISC ’03, volume
2851 of LNCS, pages 193–207, 2003.

[24] J. Heather, G. Lowe, and S. Schneider. How to
prevent type flaw attacks on security protocols. J.
Computer Security, 11(2):217–244, 2003.

[25] C. A. R. Hoare. Communicating sequential processes.
Commun. ACM, 21(8):666–677, 1978.

[26] D. Kähler and R. Küsters. Constraint solving for
contract-signing protocols. In CONCUR ’05, volume
3653 of LNCS, pages 233–247. Springer, 2005.

[27] S. Kremer, O. Markowitch, and J. Zhou. An intensive
survey of non-repudiation protocols. Computer
Communications, 25(17):1606–1621, November 2002.

[28] S. Kremer and J. Raskin. A game-based verification of
non-repudiation and fair exchange protocols. In
CONCUR’01, volume 2154 of LNCS, pages 551–565.
Springer, 2001.

[29] R. Mateescu and M. Sighireanu. Efficient on-the-fly
model-checking for regular alternation-free
mu-calculus. Sci. Comput. Program., 46(3):255–281,
2003.

[30] C. Meadows. Formal methods for cryptographic
protocol analysis: Emerging issues and trends. IEEE
J. Selected Areas in Communication, 21(2):44–54,
2003.

[31] R. De Nicola and F. Vaandrager. Three logics for
branching bisimulation. J. ACM, 42(2):458–487, 1995.

[32] L. Paulson. The inductive approach to verifying
cryptographic protocols. J. Computer Security,
6(1-2):85–128, 1998.

[33] A. Pnueli. a temporal logic of concurrent programs.
Theor. Comput. Sci., 13:45 – 60, 1981.

[34] V. Shmatikov and J. Mitchell. Finite-state analysis of
two contract signing protocols. Theor. Comput. Sci.,
283(2):419–450, 2002.

[35] H. Vogt. Asynchronous optimistic fair exchange based
on revocable items. In Financial Cryptography, volume
2742 of LNCS, pages 208–222. Springer, 2003.

[36] H. Vogt, H. Pagnia, and F. Gärtner. Using smart
cards for fair exchange. In WELCOM ’01, volume
2232 of LNCS, pages 101–113. Springer, 2001.

[37] J. Zhou, R. Deng, and F. Bao. Evolution of fair
non-repudiation with TTP. In ACISP ’99, volume
1587 of LNCS, pages 258–269. Springer, 1999.

APPENDIX

A. EQUIVALENCE PROOF SKETCH

Theorem 1. For any protocol P ,

(P‖DY) |=RCC φA ≡ (P‖I†) |= φB .

Proof sketch: The idea is to give mappings between
traces of LA and LB , such that the translation of an attack
trace in any of these systems constitutes an attack in the
other one. The translations that we give depend on the
DY intruder’s possibility (in system A) to perform κ and
terminate (which it always can do, unless it already has done
it), since the deadlock situation is not explicitly modeled in
intruder I , while it is a behavior of DY . The set of states in
which the DY intruder can perform κ is Sκ = {s ∈ SA | ∃s′ ∈
SA. s

κ−−→ s′}. The notation CSκ is used for the complement
set of Sκ. In system A, the state of the intruder depends on
set X and in system B it depends on the sets X and Y . We
use the notations X(s) and Y(s) to refer to the states of the
intruders and P(s) to refer to the state of the protocol P at
state s.

30

For translating from LB to LA we define a function FS :
SB → 2SA as

FS(s) = {ŝ ∈ Sκ | X(ŝ) = X(s) ∧ P(ŝ) = P(s)}
and FAct : Act → Act as

FAct (a) = recv

{
recv, if a = recv†

a, otherwise.

For the other direction, let G = 〈GS , GAct 〉, where GS

and GAct are the inverse images of FS and FAct , respectively.
(From the definition of I†(X, Y), it is obvious that ∀a ∈
Act . |GAct (a)| = 1.) The function GS is not total on SA.
So, we define another function H = 〈HS, HAct 〉, where HS :
CSκ → 2SB is defined as

HS(s) = {ŝ ∈ SB | P(ŝ) = P(s)}
and HAct : Act → Act is the identity function.

It turns out that, using the function F , traces in LB can
be uniquely translated into LA. Conversely, using G and H ,
traces in LA can be uniquely translated into LB . One can
think of F besides its inverses G and H as isomorphic trans-
lation functions which preserve transitions.

We need to show that φA holds for all traces that respect
RCC in system A iff φB holds in system B. Suppose first
that φA holds but not φB . Since φB does not hold, there is
a trace α, containing i but no t after i, that cannot be ex-
tended to contain t without any recv† actions in between.
Let α′ be a translation of α to system A. System LA is
finite and finitely branching (see section 2.3), so α′ can be
extended in a fair way, let us say with β, such that α′.β re-
spects RCC. Since φA holds, β must contain t. The transla-
tion of β back to system B now shows how α can be extended
to attain t, which contradicts the assumption ¬φB .

Now suppose that φB holds but not φA. Since ¬φA, there
is a trace α that respects RCC and contains i, but not t
after i. The trace α is either finite or infinite. If α is finite
then it is a deadlock trace and thus its translation to LB

violates φB . So, assume that α is infinite and let α′ be the
translation of α to LB . There is a non-empty set of states
S′ ⊆ SB that α′ visits an infinite number of times. Since φB

holds, there is a state s′ ∈ S′ that has an action a �= recv†

infinitely often enabled, but not taken by α′. From a �=
recv† it follows that FAct (a) infinitely often occurs in σ̌α,
but clearly is not taken by α. Thus α is not RCC-fair,
contradicting the assumption.

31

