skip to main content
article

Encoding of high dynamic range video with a model of human cones

Authors Info & Claims
Published:01 October 2006Publication History
Skip Abstract Section

Abstract

A recently developed quantitative model describing the dynamical response characteristics of primate cones is used for rendering high dynamic range (HDR) video. The model provides range compression, as well as luminance-dependent noise suppression. The steady-state (static) version of the model provides a global tone mapping algorithm for rendering HDR images. Both the static and dynamic cone models can be inverted, enabling expansion of the HDR images and video that were compressed with the cone model.

Skip Supplemental Material Section

Supplemental Material

adap2.mpeg

mpeg

3.7 MB

belgium1.mpeg

mpeg

8.1 MB

memorial1.mpeg

mpeg

6.8 MB

rnl1.mpeg

mpeg

9.5 MB

References

  1. Ashikhmin M. 2002. A tone mapping algorithm for high contrast images. In EGWR: Proceedings of the 13th Eurographics Workshop on Rendering. 145--156. Google ScholarGoogle Scholar
  2. Artusi A., Bittner, J., Wimmer, M., and Wilkie, A. 2003. Delivering interactivity to complex tone mapping operators. In EGSR: Proceedings of the 14th Eurographics Symposium on Rendering. 38--44. Google ScholarGoogle Scholar
  3. Baxter, B. S., Ravindra, H., and Normann, R. A. 1982. Changes in lesion detectability caused by light adaptation in retinal photoreceptors. Investigative Radiology 17, 394--401.Google ScholarGoogle Scholar
  4. Bennett, E. P. and Mcmillan, L. 2005. Video enhancement using per-pixel virtual exposures. ACM Trans. Graph. 24, 3, 845--852. Google ScholarGoogle Scholar
  5. Boynton, R. M. and Kambe, N. 1980. Chromatic difference steps of moderate size measured along theoretically critical axes. Color Res. Appl. 5, 13--23.Google ScholarGoogle Scholar
  6. Brown, K. S. 2000. Lead-Lag algorithms. http://www.mathpages.com/home/kmath198/kmath198.htm.Google ScholarGoogle Scholar
  7. Daly, S. 1993. The visible differences predictor: An algorithm for the assessment of image fidelity. In Digital Images and Human Vision. A.B. WATSON, Ed. MIT Press, Cambridge, MA. 179--206. Google ScholarGoogle Scholar
  8. Debevec, P. E. 1998. Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. Computer Graphics Annual Conference Series (SIGGRAPH). 189--198. Google ScholarGoogle Scholar
  9. DelbrüCk, T. and Mascarenhas, S. M. 1997. Notes on practical photometry. http://www.ini.unizh.ch/~tobi/anaprose/recep/practicalPhotometry.pdf.Google ScholarGoogle Scholar
  10. Devlin, K. 2002. A review of tone reproduction techniques. Tech. Rep. CSTR-02-005, Department of Computer Science, University of Bristol.Google ScholarGoogle Scholar
  11. Durand, F. and Dorsey, J. 2000. Interactive tone mapping. In Proceedings of the Eurographics Workshop on Rendering Techniques. 219--230. Google ScholarGoogle Scholar
  12. Durand, F. and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. In Computer Graphics Annual Conference Series (SIGGRAPH), 257--266. Google ScholarGoogle Scholar
  13. Fain, G. L., Matthews, H. R., Cornwall, M. C., and Koutalos, Y. 2001. Adaptation in vertebrate photoreceptors. Physiological Rev. 81, 117--151.Google ScholarGoogle Scholar
  14. Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. ACM Trans. Graph. 21, 249--256. Google ScholarGoogle Scholar
  15. Ferwerda, J. A., Pattanaik, S. N., Shirley, P., and Greenberg, D. P. 1996. A model of visual adaptation for realistic image synthesis. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. 249--258. Google ScholarGoogle Scholar
  16. Irawan, P., Ferwerda, J. A., and Marschner, S. R. 2005. Perceptually-Based tone mapping of high dynamic range image streams. In EGSR: Proceedings of the 16th Eurographics Symposium on Rendering. 231--242. Google ScholarGoogle Scholar
  17. Krawczyk, G., Myszkowski, K., and Seidel, H.-P. 2005. Lightness perception in tone reproduction for high dynamic range images. Comput. Graph. Forum 24, 3, 635--645.Google ScholarGoogle Scholar
  18. Laughlin, S. B. 1983. Matching coding to scenes to enhance efficiency. In Physical and Biological Processing of Images. O. J. BRADDICK, AND A. C. SLEIGH, Eds. Springer, New York. 42--52.Google ScholarGoogle Scholar
  19. Ledda, P., Santos, L. P., and Chalmers, A. 2004. A local model of eye adaptation for high dynamic range images. In Proceedings of the 3rd International Conference on Computer Graphics, Virtual Reality, and Visualisation. 151--160. Google ScholarGoogle Scholar
  20. Lee, B. B., Dacey, D. M., Smith, V. C., and Pokorny, J. 1999. Horizontal cells reveal cone type-specific adaptation in primate retina. Proceedings of the National Academy of Science U.S.A., 96, 14611--14616.Google ScholarGoogle Scholar
  21. Lee, B. B., Dacey, D. M., Smith, V. C., and Pokorny, J. 2003. Dynamics of sensitivity regulation in primate outer retina: The horizontal cell network. J. Vision 3, 513--526.Google ScholarGoogle Scholar
  22. Li, Y., Sharan, L., and Adelson, E. H. 2005. Compressing and companding high dynamic range images with subband architectures. In ACM Trans. Graph. 24, 3, 836--844. Google ScholarGoogle Scholar
  23. Macleod, D. I. A., Williams, D. R., and Makous, W. 1992. A visual nonlinearity fed by single cones. Vision Res. 32, 347--363.Google ScholarGoogle Scholar
  24. Mantiuk, R., Krawczyk, G., Myszkowski, K., and Seidel, H.-P. 2004. Perception-Motivated high dynamic range video encoding. ACM Trans. Graph. 23, 731--741. Google ScholarGoogle Scholar
  25. Nikonov, S., Lamb, T. D., and Pugh, E. N., Jr. 2000. The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse. J. General Physiology 116, 795--824.Google ScholarGoogle Scholar
  26. Normann, R. A., Baxter, B. S., Ravindra, H., and Anderton, P. J. 1983. Photoreceptor contributions to contrast sensitivity: Applications in radiological diagnosis. IEEE Trans. Syst. Man Cybernetics 13, 944--953.Google ScholarGoogle Scholar
  27. Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., and Greenberg, D. P. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques. 287--298. Google ScholarGoogle Scholar
  28. Pattanaik, S. N., Tumblin, J., Yee, H., and Greenberg, D. P. 2000. Time-Dependent visual adaptation for fast realistic image display. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. 47--54. Google ScholarGoogle Scholar
  29. Poynton, C. 1996. Gamma. In A Technical Introduction to Digital Video. JohnWiley, New York. http://www.poynton.com/notes/TIDV/index.html. Google ScholarGoogle Scholar
  30. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical Recipes in Fortran. Cambridge University Press, New York. Google ScholarGoogle Scholar
  31. Pugh, E. N., Jr. and Lamb, T. D. 2000. Phototransduction in vertebrate rods and cones: Molecular mechanisms of amplification, recovery and light adaptation. In Handbook of Biological Physics, vol. 3. D. G. STAVENGA et al. Eds. Elsevier, Amsterdam. 183--254.Google ScholarGoogle Scholar
  32. Reinhard, E. and Devlin, K. 2005. Dynamic range reduction inspired by photoreceptor physiology. IEEE Trans. Visualization Comput. Graph. 11, 13--24. Google ScholarGoogle Scholar
  33. Reinhard, E., Ward, G., Pattanaik, S., and Debevec, P. 2005. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Rendering. Morgan Kaufmann, San Francisco, CA. Google ScholarGoogle Scholar
  34. Richards, W. A. 1982. Lightness scale from image intensity distributions. Appl. Optics 21, 2569--2582.Google ScholarGoogle Scholar
  35. Scheel, A., Stamminger, M., and Seidel, H.-P. 2000. Tone reproduction for interactive walkthroughs. Comput. Graph. Forum 19, 3, 301--312.Google ScholarGoogle Scholar
  36. Schneeweis, D. M., and Schnapf, J. L. 1999. The photovoltage of macaque cone photoreceptors: Adaptation, noise, and kinetics. J. Neurosci. 19, 1203--1216.Google ScholarGoogle Scholar
  37. Shannon, D. E. 1948. The mathematical theory of communication. Bell Syst. Tech. J. 27, 3--91.Google ScholarGoogle Scholar
  38. Smith, N. P., and Lamb, T. D. 1997. The a-wave of the human electroretinogram recorded with a minimally invasive technique. Vision Res. 37, 2943--2952.Google ScholarGoogle Scholar
  39. Smith, V. C., Pokorny, J., Lee, B. B., and Dacey, D. M. 2001. Primate horizontal cell dynamics: An analysis of sensitivity regulation in the outer retina. J. Neurophysiology. 85, 545--558.Google ScholarGoogle Scholar
  40. Tumblin, J., Hodgins, J. K., and Guenther, B. K. 1999. Two methods for display of high contrast images. ACM Trans. Graph. 18, 56--94. Google ScholarGoogle Scholar
  41. Van Der Schaaf, A. 1998. Natural image statistics and visual processing. PhD thesis, University of Groningen. http://irs.ub.rug.nl/ppu/166956252.Google ScholarGoogle Scholar
  42. Van Hateren, J. H. 2005. A cellular and molecular model of response kinetics and adaptation in primate cones and horizontal cells. J. Vision 5, 331--347.Google ScholarGoogle Scholar
  43. Van Hateren, J. H. and Lamb, T. D. 2006. The photocurrent response of human cones is fast and monophasic. BMC Neurosci. 7, 34.Google ScholarGoogle Scholar
  44. Van Hateren, J. H., RÜTtiger, L., Sun, H., and Lee B. B. 2002. Processing of natural temporal stimuli by macaque retinal ganglion cells. J. Neurosci. 22, 9945--9960.Google ScholarGoogle Scholar
  45. Van Hateren, J. H. and Van Der Schaaf, A. 1996. Temporal properties of natural scenes. In Proceedings of the IS and T/SPIE Conference on Electronic Imaging: Science & Technology. San Jose, CA. 139--143.Google ScholarGoogle Scholar
  46. Ward Larson, G. J. 1994. The RADIANCE lighting simulation and rendering system. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. 459--472. Google ScholarGoogle Scholar
  47. Ward Larson, G. J., Rushmeier, H., and Piatko, C. 1997. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans. Visualization Comput. Graph. 3, 291--306. Google ScholarGoogle Scholar
  48. Westheimer, G. 1986. The eye as an optical instrument. In Handbook of Perception and Human Performance. K. R. Boff, et al., Eds. John Wiley, New York.Google ScholarGoogle Scholar
  49. Wyszecki, G. and Stiles, W. S. 1982. Color Science. John Wiley, New York.Google ScholarGoogle Scholar

Index Terms

  1. Encoding of high dynamic range video with a model of human cones

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader