skip to main content
article

SIGACT news online algorithms column 10: competitiveness via doubling

Published: 01 December 2006 Publication History

Abstract

We discuss what we refer to, tentatively, as the "doubling" method for designing online and offline approximation algorithms. The rough idea is to use geometrically increasing estimates on the optimal solution to produce fragments of the algorithm's solution. The term "doubling" is a little misleading, for often factors other than 2 are used, and suggestions for a better name will be appreciated.

References

[1]
E. Anderson and C. Potts. Online scheduling of a single machine machine to minimize total weighted completion time. Mathematics of Operations Research, 29:686--697, 2004.
[2]
A. Archer, R. Rajagopalan, and D. Shmoys. Lagrangian relaxation for the k-median problem: new insights and continuity properties. In Proc. 11th European Symp. on Algorithms (ESA), pages 31--42, 2003.
[3]
J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with applications to machine scheduling and virtual circuit routing. J. ACM, 44:486--504, 1997.
[4]
R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Inform. and Comput., 106:234--252, 1993.
[5]
A. Bar-Noy, A. Freund, and J. Naor. New algorithms for related machines with temporary jobs. J. Sched., 3:259--272, 2000.
[6]
A. Beck. On the linear search problem. Naval Research Logistics Quarterly, 2:221--228, 1964.
[7]
R. Bellman. An optimal search problem. SIAM Review, 5:274, 1963.
[8]
P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related machines. J. Algorithms, 35:108--121, 2000.
[9]
A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan. The minimum latency problem. In Proc. 26th Symp. Theory of Computing (STOC), pages 163--171. ACM, 1994.
[10]
S. Chakrabarti and S. Muthukrishnan. Resource scheduling for parallel databases and scientific computing. In Proc. 8th Symp. on Parallel Algorithms and Architectures (SPAA), pages 329--335, 1996.
[11]
S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein. Improved scheduling algorithms for minsum criteria. In Proc. 23rd International Colloquium on Automata, Languages, and Programming (ICALP), volume 1099 of Lecture Notes in Comput. Sci., pages 646--657. Springer, 1996.
[12]
M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic information retrieval. In Proc. 29th Symp. Theory of Computing (STOC), pages 626--635. ACM, 1997.
[13]
K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours. In Proc. 44th Symp. Foundations of Computer Science (FOCS), pages 36--45, 2003.
[14]
C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques for average completion time scheduling. In Proc. 8th Symp. on Discrete Algorithms (SODA), pages 609--618. ACM/SIAM, 1997.
[15]
M. Chrobak, C. Kenyon, J. Noga, and N. Young. Online medians via online bidding. In Proc. 7th Latin American Theoretical Informatics Symp. (LATIN), volume 3887 of Lecture Notes in Comput. Sci., pages 311--322, 2006.
[16]
F. Chudak and D. B. Shmoys. Approximation algorithms for precedence-constrained scheduling problems on parallel machines that run at different speeds. J. Algorithms, 30:323--343, 1999.
[17]
A. Das and C. Kenyon. On hierarchical diameter-clustering and the supplier problems. In Proc. WAOA'06, 4th Workshop on Approximation and Online Algorithms, September 2006, Zurich, Switzerland, LNCS, Springer, 2006.
[18]
S. Dasgupta and P. Long. Performance guarantees for hierarchical clustering. Journal of Computer and System Sciences, 70(4):555--569, 2005.
[19]
E. D. Demaine, S. P. Fekete, and S. Gal. Online searching with turn cost, 2004.
[20]
T. Ebenlendr and J. Sgall. Optimal and online preemptive scheduling on uniformly related machines. In Proc. 21st Symp. on Theoretical Aspects of Computer Science (STACS), volume 2996 of Lecture Notes in Comput. Sci., pages 199--210. Springer, 2004.
[21]
T. Ebenlendr, J. Sgall, and W. Jawor. Preemptive online scheduling: Optimal algorithms for all speeds. In Proc. 13th European Symp. on Algorithms (ESA), volume 4168 of Lecture Notes in Comput. Sci., pages 327--339. Springer, 2006.
[22]
S. Gal. Search Games. Academic Press, 1980.
[23]
M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum latency problem. In Proc. 7th Symp. on Discrete Algorithms (SODA), pages 152--158. ACM/SIAM, 1996.
[24]
M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum latency problem. Mathematical Programming, 82:111--124, 1998.
[25]
T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Comput. Sci., 38:293--306, 1985.
[26]
R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical J., 45:1563--1581, 1966.
[27]
L. Hall, D. Shmoys, and J. Wein. Scheduling to minimize average completion time: Off-line and on-line algorithms. In Proc. 7th Symp. on Discrete Algorithms (SODA), pages 142--151. ACM/SIAM, 1996.
[28]
L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time: Off-line and on-line approximation algorithms. Math. Oper. Res., 22:513--544, 1997.
[29]
J. A. Hoogeveen and A. P. A. Vestjens. Optimal on-line algorithms for single-machine scheduling. In Proc. 5th Conf. Integer Programming and Combinatorial Optimization (IPCO), volume 1084 of Lecture Notes in Comput. Sci., pages 404--414. Springer, 1996.
[30]
M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. In Proc. 4th Symp. on Discrete Algorithms (SODA), pages 441--447. ACM/SIAM, 1993.
[31]
G. Lin, C. Nagarajan, R. Rajamaran, and D. Williamson. A general approach for incremental approximation and hierarchical clustering. In Proc. 17th Symp. on Discrete Algorithms (SODA). ACM/SIAM, 2006.
[32]
R. R. Mettu and C. G. Plaxton. The online median problem. In Proc. 41st Symp. Foundations of Computer Science (FOCS), pages 339--348. IEEE, 2000.
[33]
R. R. Mettu and C. G. Plaxton. The online median problem. SIAM J. Comput., 32:816--832, 2003.
[34]
R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In Proc. 4th Symp. on Discrete Algorithms (SODA), pages 422--431. ACM/SIAM, 1993.
[35]
R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. Theoret. Comput. Sci., 130:17--47, 1994.
[36]
C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoret. Comput. Sci., 84:127--150, 1991.
[37]
R. Sitters. The minimum latency problem is NP-hard for weighted trees. In Proc. 9th Integer Programming and Combinatorial Optimization Conference, 2002.

Cited By

View all
  • (2024)Contract scheduling with distributional and multiple adviceProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/404(3652-3660)Online publication date: 3-Aug-2024
  • (2024)Online computation with untrusted adviceJournal of Computer and System Sciences10.1016/j.jcss.2024.103545144(103545)Online publication date: Sep-2024
  • (2022)Resilient Scheduling of Moldable Parallel Jobs to Cope With Silent ErrorsIEEE Transactions on Computers10.1109/TC.2021.310474771:7(1696-1710)Online publication date: 1-Jul-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGACT News
ACM SIGACT News  Volume 37, Issue 4
December 2006
117 pages
ISSN:0163-5700
DOI:10.1145/1189056
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 December 2006
Published in SIGACT Volume 37, Issue 4

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Contract scheduling with distributional and multiple adviceProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/404(3652-3660)Online publication date: 3-Aug-2024
  • (2024)Online computation with untrusted adviceJournal of Computer and System Sciences10.1016/j.jcss.2024.103545144(103545)Online publication date: Sep-2024
  • (2022)Resilient Scheduling of Moldable Parallel Jobs to Cope With Silent ErrorsIEEE Transactions on Computers10.1109/TC.2021.310474771:7(1696-1710)Online publication date: 1-Jul-2022
  • (2021)New results on multi-level aggregationTheoretical Computer Science10.1016/j.tcs.2021.02.016861(133-143)Online publication date: Mar-2021
  • (2021)Guessing fractions of online sequencesDiscrete Applied Mathematics10.1016/j.dam.2020.07.015308:C(147-161)Online publication date: 29-Dec-2021
  • (2020)Interruptible algorithms for multiproblem solvingJournal of Scheduling10.1007/s10951-020-00644-923:4(451-464)Online publication date: 1-Aug-2020
  • (2020)Online Clique ClusteringAlgorithmica10.1007/s00453-019-00625-182:4(938-965)Online publication date: 1-Apr-2020
  • (2019)On-line Search in Two-Dimensional EnvironmentTheory of Computing Systems10.1007/s00224-019-09948-6Online publication date: 11-Sep-2019
  • (2018)An $\mathcal{O}(\log {m})$-Competitive Algorithm for Online Machine MinimizationSIAM Journal on Computing10.1137/17M116032X47:6(2057-2077)Online publication date: 27-Nov-2018
  • (2018)Preemptively Guessing the CenterCombinatorial Optimization10.1007/978-3-319-96151-4_24(277-289)Online publication date: 18-Jul-2018
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media