skip to main content
10.1145/1198555.1198763acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Adaptive frameless rendering

Published: 31 July 2005 Publication History

Abstract

We propose an adaptive form of frameless rendering with the potential to dramatically increase rendering speed over conventional interactive rendering approaches. Without the rigid sampling patterns of framed renderers, sampling and reconstruction can adapt with very fine granularity to spatio-temporal color change. A sampler uses closed-loop feedback to guide sampling toward edges or motion in the image. Temporally deep buffers store all the samples created over a short time interval for use in reconstruction and as sampler feedback. GPU-based reconstruction responds both to sampling density and space-time color gradients. Where the displayed scene is static, spatial color change dominates and older samples are given significant weight in reconstruction, resulting in sharper and eventually antialiased images. Where the scene is dynamic, more recent samples are emphasized, resulting in less sharp but more up-to-date images. We also use sample reprojection to improve reconstruction and guide sampling toward occlusion edges, undersampled regions, and specular highlights. In simulation our frameless renderer requires an order of magnitude fewer samples than traditional rendering of similar visual quality (as measured by RMS error), while introducing overhead amounting to 15% of computation time.

References

[1]
{BDT99} Bala, K., Dorsey, J., Teller, S. 1999. Radiance interpolants for accelerated bounded-error ray tracing. ACM Trans. Graph, 18, 3, 213--256.
[2]
{BWG03} Bala, K., Walter, B., Greenberg, D. P. 2003. Combining edges and points for interactive high-quality rendering. ACM Trans. Graph., 22, 3, 631--640 (Proc. ACM SIGGRAPH).
[3]
{BFGS86} Bergman, L., Fuchs, H., Grant, E., Spach, E. 1986. Image rendering by adaptive refinement. Proc. ACM SIGGRAPH, 29--37.
[4]
{BFMS94} Bishop, G., Fuchs, H., McMillan, H., Scher Zagier, E. J. 1994. Frameless rendering: double buffering considered harmful. Proc. ACM SIGGRAPH, 175--176.
[5]
{CHH02} Carr, N. A., Hall, J. D., Hart, J. C. 2002. The ray engine. Proc. ACM SIGGRAPH/Eurographics Graphics Hardware, 37--46.
[6]
{CT03} Choudhury, P., Tumblin, J. 2003. The trilateral filter for high contrast images and meshes. Proc. Eurographics Workshop on Rendering, 186--196.
[7]
{DD02} Durand, F., Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graphics, 21, 3, 257--266 (Proc. ACM SIGGRAPH).
[8]
{DTB97} Dutton, K., Thompson, S., Barrachlough, B. 1997. The Art of Control Engineering, 1st ed. Addison-Wesley.
[9]
{G95} Glassner, A. 1995. Principles of Digital Image Synthesis, 1st ed. Morgan Kaufmann.
[10]
{HDM03} Havran, V., Damez, C., Myszkowski, K. 2003. An efficient spatio-temporal architecture for animation rendering. Proc. Eurographics Symposium on Rendering, 106--117.
[11]
{J01} Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. AK Peters.
[12]
{LAM00} Lext, J., Assarsson, U., Moeller, T. 2000. Bart: A benchmark for animated ray tracing. Tech. Rpt. 00-14, Dept. Computer Engineering, Chalmers Univ. Tech. http://www.ce.chalmers.se/BART.
[13]
{LRC*02} Luebke, D., Reddy, M., Cohen, J. D., Varshney, A., Watson, B., Huebner, R. 2002. Level of Detail for 3D Graphics, 1st ed. Morgan Kaufmann.
[14]
{M87} Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. Proc. ACM SIGGRAPH, 65--72.
[15]
{MCEF94} Molnar, S., Cox, M., Ellsworth, D., Fuchs, H. 1994. A sorting classification of parallel rendering. IEEE Computer Graphics and Applications, 14, 4, 23--32.
[16]
{OCMB95} Olano, M., Cohen, J., Mine, M., Bishop, G. 1995. Combatting rendering latency. Proc. ACM Interactive 3D Graphics, 19--24.
[17]
{PS89} Painter, J., Sloan, K. 1989. Antialiased ray tracing by adaptive progressive refinement. Proc. ACM SIGGRAPH, 281--288.
[18]
{PMS*99} Parker, S., Martin, W., Sloan, P.-P.J., Shirley, P., Smits, B., Hansen, C. 1999. Interactive ray tracing. Proc. ACM Interactive 3D Graphics, 119--126.
[19]
{PKGH97} Pharr, M., Kolb, C., Gershbein, R., Hanrahan, P. 1997. Rendering Complex Scenes with memory-coherent ray tracing. Proc. ACM SIGGRAPH, 101--108.
[20]
{PBMH02} Purcell, T. J., Buck, I., Mark, W. R., Hanrahan, P. 2002. Ray tracing on programmable graphics hardware. ACM Trans. Graphics, 21, 3, 703--712 (Proc. ACM SIGGRAPH).
[21]
{RP94} Regan, M. J. P., Pose, R. 1994. Priority rendering with a virtual reality address recalculation pipeline. Proc. ACM SIGGRAPH, 155--162.
[22]
{SS00} Simmons, M., Séquin, C. 2000. Tapestry: A dynamic mesh-based display representation for interactive rendering. Proc. Eurographics Workshop on Rendering, 329--340.
[23]
{TA98} Teller, S., Alex, J. 1998. Frustum Casting for Progressive, Interactive Rendering. Massachusetts Institute of Technology Technical Report LCS TR-740. Available at http://graphics.csail.mit.edu/pubs/MIT-LCS-TR-740.ps.gz
[24]
{TPWG02} Tole, P., Pellacini, F., Walter, B., Greenberg, D. P. 2002. Interactive global illumination in dynamic scenes. ACM Trans. Graphics, 21, 3, 537--546 (Proc. ACM SIGGRAPH).
[25]
{TK96} Torborg, J., Kajiya, J. 1996. Talisman: Commodity Reality Graphics for the PC. Proc. ACM SIGGRAPH, 353--363.
[26]
{WBDS03} Wald, I., Benthin, C., Dietrich, A., Slusallek, P. 2003. Interactive distributed ray tracing on commodity PC clusters---state of the art and practical applications. Lecture Notes on Computer Science, 2790, 499--508 (Proc. EuroPar).
[27]
{WBWS01} Wald, I., Benthin, C., Wagner, M., Slusallek, P. 2001. Interactive rendering with coherent ray tracing. Computer Graphics Forum, 20, 153--164 (Proc. Eurographics).
[28]
{WPS*03} Wald, I., Purcell, T. J., Schmittler, J., Benthin, C., Slusallek, P. 2003. Realtime ray tracing and its use for interactive global illumination. Eurographics State of the Art Reports.
[29]
{WSB01} Wald, I., Slusallek, P., Benthin, C. 2001. Interactive distributed ray tracing of highly complex models. Proc. Eurographics Workshop on Rendering, 277--288.
[30]
{WDG02} Walter, B., Drettakis, G., Greenberg, D. P. 2002. Enhancing and optimizing the render cache. Proc. Eurographics Workshop on Rendering, 37--42.
[31]
{WDP99} Walter, B., Drettakis, G., Parker S. 1999. Interactive rendering using render cache. Proc. Eurographics Workshop on Rendering, 19--30.
[32]
{WS99} Ward, G., Simmons, M. 1999. The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse Environments, ACM Trans. Graph. 18, 4, 361--398.
[33]
{WLWD03} Woolley, C., Luebke, D., Watson, B. A., Dayal, A. 2003. Interruptible rendering. Proc. ACM Interactive 3D Graphics, 143--151.

Cited By

View all
  • (2023)Perceptually-guided Dual-mode Virtual Reality System For Motion-adaptive DisplayIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.324709729:5(2249-2257)Online publication date: May-2023
  • (2021)Temporally Adaptive Shading Reuse for Real-Time Rendering and Virtual RealityACM Transactions on Graphics10.1145/344679040:2(1-14)Online publication date: 27-Apr-2021
  • (2021)Coherence and Adaptivity in Frameless Rendering-A Practical and Information Theoretic AnalysisIEEE Access10.1109/ACCESS.2021.30768989(67752-67760)Online publication date: 2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '05: ACM SIGGRAPH 2005 Courses
July 2005
7157 pages
ISBN:9781450378338
DOI:10.1145/1198555
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 31 July 2005

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Acceptance Rates

Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)17
  • Downloads (Last 6 weeks)2
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Perceptually-guided Dual-mode Virtual Reality System For Motion-adaptive DisplayIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.324709729:5(2249-2257)Online publication date: May-2023
  • (2021)Temporally Adaptive Shading Reuse for Real-Time Rendering and Virtual RealityACM Transactions on Graphics10.1145/344679040:2(1-14)Online publication date: 27-Apr-2021
  • (2021)Coherence and Adaptivity in Frameless Rendering-A Practical and Information Theoretic AnalysisIEEE Access10.1109/ACCESS.2021.30768989(67752-67760)Online publication date: 2021
  • (2020)Realistic Simulation of Cultural HeritageNatural Language Processing10.4018/978-1-7998-0951-7.ch064(1314-1347)Online publication date: 2020
  • (2020)Glossy probe reprojection for interactive global illuminationACM Transactions on Graphics10.1145/3414685.341782339:6(1-16)Online publication date: 27-Nov-2020
  • (2020)Time‐Warped Foveated Rendering for Virtual Reality HeadsetsComputer Graphics Forum10.1111/cgf.1417640:1(110-123)Online publication date: 26-Oct-2020
  • (2018)AR TimewarpingProceedings of the 9th Augmented Human International Conference10.1145/3174910.3174919(1-8)Online publication date: 6-Feb-2018
  • (2018)Galaxy: Asynchronous Ray Tracing for Large High-Fidelity Visualization2018 IEEE 8th Symposium on Large Data Analysis and Visualization (LDAV)10.1109/LDAV.2018.8739241(72-76)Online publication date: Oct-2018
  • (2017)Realistic Simulation of Cultural HeritageInternational Journal of Computational Methods in Heritage Science10.4018/IJCMHS.20170101021:1(10-40)Online publication date: 1-Jan-2017
  • (2017)A System Model For Frameless Asynchronous High Dynamic Range SensorsProceedings of the 27th Workshop on Network and Operating Systems Support for Digital Audio and Video10.1145/3083165.3083178(85-90)Online publication date: 20-Jun-2017
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media