skip to main content
10.1145/1236360.1236402acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
Article

A spatial sampling scheme based on innovations diffusion in sensor networks

Published: 25 April 2007 Publication History

Abstract

This paper considers an estimation network of many distributed sensors with a certain correlation structure. Due to limited communication resources, the network selects only a subset of sensor measurements for estimation as long as the resulting fidelity is tolerable. We present a distributed sampling and estimation framework based on innovations diffusion, within which the sensor selection and estimation are accomplished through local computation and communications between sensor nodes. In order to achieve energy efficiency, the proposed algorithm uses a greedy heuristics to select a nearly minimum number of active sensors in order to ensure the desired fidelity for each estimation period. Extensive simulations illustrate the effectiveness of the proposed sampling scheme.

References

[1]
I. F. Akyildiz, W. Su, Y. Sankarsubramaniam, and E. Cayirci. Wireless sensor networks: A survey. Computer Networks, 38:393--422, Mar. 2002.
[2]
F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and P.-J. Nordlund. Particle filters for positioning, navigation, and tracking. IEEE Trans. Signal Processing, 50(2):425--437, Feb. 2002.
[3]
A. H. Sayed. Fundamentals of Adaptive Filtering. John Wiley & Sons, NJ, 2003.
[4]
F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collaboration. IEEE Signal Processing Magazine, 19(1):61--72, 2002.
[5]
E. Ertin, J. Fisher, and L. Potter. Maximum mutual information principle for dynamic sensor query problems. In Proc. IPSN, pages 405--416, Palo Alto, CA, Apr. 2003.
[6]
H. Wang, G. Pottie, K. Yao, and D. Estrin. Entropy-based sensor selection heuristic for target localization. In Proc. IPSN, pages 36--45, Berkeley, CA, Apr. 2004.
[7]
V. Isler and R. Bajcsy. The sensor selection problem for bounded uncertainty sensing models. In Proc. IPSN, pages 151--158, Los Angeles, CA, Apr. 2005.
[8]
Q. Dong. Maximizing system lifetime in wireless sensor networks. In Proc. IPSN, pages 13--19, Los Angeles, CA, Apr. 2005.
[9]
J. Xiao, S. Cui, Z. Q. Luo, and A. J. Goldsmith. Power scheduling of universal decentralized estimation in sensor networks. IEEE Trans. Signal Processing, 54(2):413--422, Feb. 2006.
[10]
S. Cui, J. Xiao, A. J. Goldsmith, Z.-Q. Luo, and H. V. Poor. Estimation diversity and energy efficiency in distributed sensing. IEEE Trans. Signal Processing, 2007.
[11]
M. Perillo, Z. Ignjatovic, and W. Heinzelman. An energy conservation method for wireless sensor networks employing a blue noise spatial sampling technique. In Proc. IPSN, pages 116--123, Berkeley, CA, Apr. 2004.
[12]
Z. Hu, J. Zhang, and L. Tong. Adaptive sensor activity control in many-to-one sensor networks. IEEE J. Select. Areas Commun., 24(8):1525--1534, Aug. 2006.
[13]
Z. Quan and A. H. Sayed. Innovations-based sampling over spatially-correlated sensors. In Proc. IEEE ICASSP, Honolulu, Hawaii, Apr. 2007.
[14]
V. Saligrama, M. Alanyali, and O. Savas. Distributed detection in sensor networks with packet losses and finite capacity links. IEEE Trans. Signal Processing, 2007.
[15]
V. Delouille, R. Neelamani, and R. Baraniuk. Robust distributed estimation in sensor networks using the embedded polygons algorithm. In Proc. IPSN, pages 405--413, Berkeley, CA, Apr. 2004.
[16]
L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion based on average consensus. In Proc. IPSN, pages 63--70, Los Angeles, CA, Apr. 2005.
[17]
R. Nowak, U. Mitra, and R. Willett. Estimating inhomogeneous fields using wireless sensor networks. IEEE J. Select. Areas Commun., 22(6):999--1006, Aug. 2004.
[18]
M. Rabbat and R. Nowak. Distributed optimization in sensor networks. In Proc. IPSN, pages 20--27, Berkeley, CA, Apr. 2004.
[19]
C. Lopes and A. H. Sayed. Distributed processing over adaptive networks. In Proc. Adaptive Sensor Array Processing Workshop, MIT Lincoln Laboratory, MA, June 2006.
[20]
N. A. C. Cressie. Statistics for Spatial Data. John Wiley & Sons, NJ, 1993.
[21]
M. C. Vuran, O. B. Akan, and I. F. Akyildiz. Spatio-temporal correlation: theory and applications for wireless sensor networks. Computer Networks, 45:245--259, 2004.
[22]
T. Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice-Hall, NJ, 2000.

Cited By

View all
  • (2016)VSF: An Energy-Efficient Sensing Framework Using Virtual SensorsIEEE Sensors Journal10.1109/JSEN.2016.254683916:12(5046-5059)Online publication date: Jun-2016
  • (2014)No-sense: Sense with dormant sensors2014 Twentieth National Conference on Communications (NCC)10.1109/NCC.2014.6811303(1-6)Online publication date: Feb-2014
  • (2010)A decentralized approach for nonlinear prediction of time series data in sensor networksEURASIP Journal on Wireless Communications and Networking10.1155/2010/6273722010(1-12)Online publication date: 1-Jan-2010
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
IPSN '07: Proceedings of the 6th international conference on Information processing in sensor networks
April 2007
592 pages
ISBN:9781595936387
DOI:10.1145/1236360
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 April 2007

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. distributed processing
  2. estimation
  3. innovations
  4. mean-squared error
  5. sampling
  6. sensor networks

Qualifiers

  • Article

Conference

IPSN07
Sponsor:

Acceptance Rates

Overall Acceptance Rate 143 of 593 submissions, 24%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 08 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2016)VSF: An Energy-Efficient Sensing Framework Using Virtual SensorsIEEE Sensors Journal10.1109/JSEN.2016.254683916:12(5046-5059)Online publication date: Jun-2016
  • (2014)No-sense: Sense with dormant sensors2014 Twentieth National Conference on Communications (NCC)10.1109/NCC.2014.6811303(1-6)Online publication date: Feb-2014
  • (2010)A decentralized approach for nonlinear prediction of time series data in sensor networksEURASIP Journal on Wireless Communications and Networking10.1155/2010/6273722010(1-12)Online publication date: 1-Jan-2010
  • (2010)Spatio-temporal soil moisture measurement with wireless underground sensor networks2010 The 9th IFIP Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net)10.1109/MEDHOCNET.2010.5546861(1-8)Online publication date: Jun-2010
  • (2009)Energy Efficient Information Processing in Wireless Sensor NetworksGuide to Wireless Sensor Networks10.1007/978-1-84882-218-4_1(1-26)Online publication date: 22-May-2009
  • (2008)An association model of sensor properties for event diffusion spotting sensor networksProceedings of the 10th Asia-Pacific web conference on Progress in WWW research and development10.5555/1791734.1791758(178-189)Online publication date: 26-Apr-2008
  • (2008)An Association Model of Sensor Properties for Event Diffusion Spotting Sensor NetworksProgress in WWW Research and Development10.1007/978-3-540-78849-2_20(178-189)Online publication date: 2008

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media