skip to main content
article

Paraconsistent reasoning and preferential entailments by signed quantified Boolean formulae

Published: 01 July 2007 Publication History

Abstract

We introduce a uniform approach of representing a variety of paraconsistent nonmonotonic formalisms by quantified Boolean formulae (QBFs) in the context of multiple-valued logics. We show that this framework provides a useful platform for capturing, in a simple and natural way, a wide range of methods for preferential reasoning. The outcome is a subtle approach to represent the underlying formalisms, which induces a straightforward way to compute the corresponding entailments: By incorporating off-the-shelf QBF solvers it is possible to simulate within our framework various kinds of preferential formalisms, among which are Priest's logic LPm of reasoning with minimal inconsistency, Batens' adaptive logic ACLuNs2, Besnard and Schaub's inference relation &vbar;=n, a variety of formula-preferential systems, some bilattice-based preferential relations (e.g., &vbar;=I1 and &vbar;=I2), and consequence relations for reasoning with graded uncertainty, such as the four-valued logic &vbar;=4c.

References

[1]
Arieli, O. 2004. Paraconsistent preferential reasoning by signed quantified Boolean formulae. In Proceedings of the 16th European Conference on Artificial Intelligence (ECAI), R. López de Mántaras and L. Saitta, Eds. IOS Press, Amsterdam, The Netherlands, 773--777.
[2]
Arieli, O. 2003. Reasoning with different levels of uncertainty. Appl. Non-Classical Logics 13, 3-4, 317--343.
[3]
Arieli, O. and Avron, A. 2000. Bilattices and paraconsistency. In Frontiers of Paraconsistent Logic, D. Batens et al., Eds. Studies in Logic and Computation, vol. 8. Research Studies Press, Taunton, UK, 11--27.
[4]
Arieli, O. and Avron, A. 1998. The value of the four values. Artif. Intell. 102, 1, 97--141.
[5]
Arieli, O. and Avron, A. 1996. Reasoning with logical bilattices. J. Logic Lang. Info. 5, 1, 25--63.
[6]
Arieli, O. and Denecker, M. 2003. Reducing preferential paraconsistent reasoning to classical entailment. Logic Comput. 13, 4, 557--580.
[7]
Arieli, O. and Denecker, M. 2002. Modeling paraconsistent reasoning by classical logic. In Proceedings of the 2nd Symposium on Foundations of Information and Knowledge Systems (FoIKS), T. Eiter and K. D. Schewe, Eds. Lecture Notes in Computer Science, vol. 2284, Springer-Verlag, 1--14.
[8]
Arieli, O., Denecker, M., Van Nuffelen, B., and Bruynooghe, M. 2004. Database repair by signed formulae. In Proceedings of the 3rd Symposium on Foundations of Information and Knowledge Systems (FoIKS), D. Seipel and J. M. Turull Torres, Eds. Lecture Notes in Computer Science, vol. 2942, Springer-Verlag, 14--30.
[9]
Avron, A. and Lev, I. 2001. A formula-preferential base for paraconsistent and plausible nonmonotonic reasoning. In Proceedings of the Joint KRR-IJCAI Workshop on Inconsistency in Data and Knowledge. 60--70.
[10]
Batens, D. 1989. Dynamic dialectical logics. In Paraconsistent Logic. Essay on the Inconsistent, G. Priest et al., Eds. Philosophia Verlag, 187--217.
[11]
Batens, D. 1998. Inconsistency-adaptive logics. In Logic at Work, E. Orlowska, Ed. Physica Verlag, 445--472.
[12]
Batens, D. 2000. A survey on inconsistency-adaptive logics. In Frontiers of Paraconsistent Logic, D. Batens et al., Eds. Studies in Logic and Computation, vol. 8. Research Studies Press, Taunton, UK, 69--73.
[13]
Belnap, N. D. 1977a. How a computer should think. In Contemporary Aspects of Philosophy, G. Ryle, Ed. Oriel Press, 30--56.
[14]
Belnap, N. D. 1977b. A useful four-valued logic. In Modern Uses of Multiple-Valued Logics, J. M. Dunn and G. Epstein, Eds. Reidel, 7--37.
[15]
Benedetti, M. 2005. Evaluating QBFs via symbolic skolemization. In Proceedings of the 11th International Conference on Logic Programming, Artificial Intelligence and Reasoning (LPAR), F. Baader and A. Voronkov, Eds. Lecture Notes in Artificial Intelligence, vol. 3452, Springer-Verlag, 285--300.
[16]
Besnard, P. and Schaub, T. 1996. A simple signed system for paraconsistent reasoning. In Proceedings of the 5th European Conference on Logics in Artificial Intelligence (JELIA), J. Alferes et al., Eds. Lecture Notes in Artificial Intelligence, vol. 1126, Springer-Verlag, 404--416.
[17]
Besnard, P. and Schaub, T. 1997. Circumscribing inconsistency. In Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann, San Francisco, CA, 150--155.
[18]
Besnard, P. and Schaub, T. 1998. Signed systems for paraconsistent reasoning. Automat. Reason. 20, 1, 191--213.
[19]
Besnard, P., Schaub, T., Tompits, H., and Woltran, S. 2002. Paraconsistent reasoning via quantified Boolean formulas I: Axiomatizing signed systems. In Proceedings of the 8th European Conference on Logics in Artificial Intelligence (JELIA), S. Flesca et al., Eds. Lecture Notes in Artificial Intelligence, vol. 2424, Springer-Verlag, 320--331.
[20]
Besnard, P., Schaub, T., Tompits, H., and Woltran, S. 2003. Paraconsistent reasoning via quantified Boolean formulas II: Circumscribing inconsistent theories. In Proceedings of the 7th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), T. D. Nielsen and N. L. Zhang, Eds. Lecture Notes in Artificial Intelligence, vol. 2711, Springer-Verlag, 528--539.
[21]
Besnard, P., Schaub, T., Tompits, H., and Woltran, S. 2004. Representing paraconsistent reasoning via quantified propositional logic. In Inconsistency Tolerance, L. Bertossi et al., Eds. Lecture Notes in Computer Science, vol. 3300, Springer-Verlag, 84--118.
[22]
Cadoli, M., Giovanardi, A., and Schaerf, M. 1998. An algorithm to evaluate quantified Boolean formulae. In Proceedings of the 15th National Conference on Artificial Intelligence (AAAI). AAAI Press, 262--267.
[23]
Cadoli, M. and Schaerf, M. 1996. On the complexity of entailment in propositional multivalued logics. Ann. Math. Artif. Intell. 18, 29--50.
[24]
Cadoli, M., Schaerf, M., Giovanardi, A., and Giovanardi, M. 2002. An algorithm to evaluate quantified Boolean formulae and its experimental evaluation. Automat. Reason. 28, 2, 101--142.
[25]
Carnielli, W. A. and Marcos, J. 2002. A taxonomy of C-systems. In Paraconsistency: The Logical Way to the Inconsistent, W. A. Carnielli et al., Eds. Lecture Notes in Pure and Applied Mathematics, vol. 228. Marcel Dekker, New York, 1--94.
[26]
Costa-Marquis, S. and Marquis, P. 2004. On the complexity of paraconsistent inference relations. In Inconsistency Tolerance, L. Bertossi et al., Eds. Lecture Notes in Computer Science, vol. 3300, Springer-Verlag, 151--190.
[27]
Costa-Marquis, S. and Marquis, P. 2002. Complexity results for paraconsistent inference relations. In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR). Morgan Kaufmann, San Francisco, CA, 61--72.
[28]
da Costa, N. C. A. 1974. On the theory of inconsistent formal systems. Notre Dame J. Formal Logic 15, 497--510.
[29]
Davis, M., Logemann, G., and Loveland, D. 1962. A machine program for theorem proving. Commun. ACM 7, 5, 394--397.
[30]
Davis, M. and Putnam, H. 1960. A computing procedure for quantification theory. J. ACM 7, 3, 201--215.
[31]
Egly, U., Eiter, T., Tompits, H., and Woltran, S. 2000. Solving advanced reasoning tasks using quantified Boolean formulas. In Proceedings of the 16th National Conference on Artificial Intteligence (AAAI). AAAI Press, 417--422.
[32]
Egly, U., Seidl, M., Tompits, H., Woltran, S., and Zolda, M. 2004. Comparing different prenexing strategies for quantified Boolean formulas. In Proceedings of the 6th International Conference on Theory and Applications of Satisfiability (SAT), E. Guinchiglia and A. Tacchella, Eds. Lecture Notes in Computer Science, vol. 2919, Springer-Verlag, 214--228.
[33]
Eiter, T., Leone, N., Mateis, C., Pfeifer, G., and Scarcello, F. 1998. The KR system dlv: Progress report, comparisons and benchmarks. In Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR). Morgan Kaufmann, San Fracisco, CA, 406--417.
[34]
Fitting, M. 1990. Kleene's logic, generalized. Logic Comput. 1, 797--810.
[35]
Ginsberg, M. L. 1988. Multi-Valued logics: A uniform approach to reasoning in AI. Comput. Intell. 4, 256--316.
[36]
Giunchiglia, E., Narizzano, M., and Tacchella, A. 2001. QuBE: A system for deciding quantified Boolean formulas satisfiability. In Proceedings of the 1st International Conference on Automated Reasoning (IJCAR), R. Gor et al., Eds. Lecture Notes in Computer Science, vol. 2083, Springer-Verlag, 364--369.
[37]
Kifer, M. and Lozinskii, E. L. 1992. A logic for reasoning with inconsistency. Auto. Reason. 9, 2, 179--215.
[38]
Kleene, S. C. 1950. Introduction to Metamathematics. Van Nostrand, New York.
[39]
Kleine-Büning, H., Karpinski, M., and Fögel, A. 1995. Resolution for quantified Boolean formulas. Inf. Comput. 177, 1, 12--18.
[40]
Konieczny, S. and Marquis, P. 2002. Three-Valued logics for inconsistency handling. In Proceedings of the 8th European Conference on Logics in Artificial Intelligence (JELIA). Lecture Notes in Artificial Intelligence, vol. 2424, Springer-Verlag, 332--344.
[41]
Kraus, S., Lehmann, D., and Magidor, M. 1990. Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intel. 44, 1--2, 167--207.
[42]
Le Berre, D., Simon, L., and Tacchella, A. 2004. Challenges in the QBF arena: The SAT'03 evaluation of QBF solvers. In Proceedings of the 6th International Conference on Theory and Applications of Satisfiability (SAT), E. Guinchiglia and A. Tacchella, Eds. Lecture Notes in Computer Science, vol. 2919, Springer-Verlag, 468--485.
[43]
Lehmann, D. and Magidor, M. 1992. What does a conditional knowledge base entail? Artif. Intel. 55, 1--60.
[44]
Letz, R. 2002. Lemma and model caching in decision procedures for quantified Boolean formulas. In Proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX), U. Egly and G. C. Fermüler, Eds. Lecture Notes in Artificial Intelligence, vol. 2381, Springer-Verlag, 160--175.
[45]
Lifschitz, V. 1985. Computing circumscription. In Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann, San Francisco, CA, 121--127.
[46]
Makinson, D. 1994. General patterns in nonmonotonic reasoning. In Handbook of Logic in Artificial Intelligence and Logic Programming, D. Gabbay et al., Eds. Oxford Science Publications, 35--110.
[47]
McCarthy, J. 1980. Circumscription---A form of non monotonic reasoning. Artif. Intel. 13, 1--2, 27--39.
[48]
Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., and Malik, S. 2001. Chaff: Engineering an efficient SAT solver. In Proceedings of the 39th Design Automation Conference (DAC). ACM, New York, 530--535.
[49]
Niemelä, I. and Simons, P. 1996. Efficient implementation of the well-founded and stable model semantics. In Proceedings of the Joint International Conference and Symposium on Logic Programming (JICSLP). MIT Press, Cambridge, MA, 289--303.
[50]
Priest, G. 1991. Minimally inconsistent LP. Studia Logica 50, 321--331.
[51]
Priest, G. 1989. Reasoning about truth. Artif. Intel. 39, 231--244.
[52]
Rintanen, J. T. 1999. Improvements of the evaluation of quantified Boolean formulae. In Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann, San Francisco, CA, 1192--1197.
[53]
Schlechta, K. 2000. Unrestricted preferential structures. Logic Comput. 10, 4, 573--581.
[54]
Shoham, Y. 1987. A semantical approach to nonmonotonic logics. In Readings in Non-Monotonic Reasoning, M. L. Ginsberg, Ed. Morgan Kauffman, Los Altos, CA, 227--249.
[55]
Shoham, Y. 1988. Reasoning About Change: Time and Causation from the Standpoint of Artificial Intelligence. MIT Press, Cambridge, MA.
[56]
Wrathall, C. 1976. Complete sets and the polynomial-time hierarchy. Theoret. Comput. Sci. 3, 1, 23--33.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Computational Logic
ACM Transactions on Computational Logic  Volume 8, Issue 3
July 2007
210 pages
ISSN:1529-3785
EISSN:1557-945X
DOI:10.1145/1243996
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2007
Published in TOCL Volume 8, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Paraconsistent and nonmonotonic reasoning
  2. preferential semantics
  3. quantified Boolean formulae

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media