skip to main content
10.1145/1247480.1247649acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
Article

Streaming in a connected world: querying and tracking distributed data streams

Published: 11 June 2007 Publication History
First page of PDF

Supplementary Material

Low Resolution (p1178-cormode_56k.mov)
High Resolution (p1178-cormode_768k.mov)

References

[1]
D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J. Hwang, W. Lindner, A. Rasin, N. Tatbul, Y. Xing, and S. Zdonik. Distributed operation in the borealis stream processing engine. In Proceedings of ACM SIGMOD International Conference on Management of Data, 2005.
[2]
N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join sizes in limited storage. In Proceedings of ACM Principles of Database Systems, pages 10--20, 1999.
[3]
N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments. In Proceedings of the ACM Symposium on Theory of Computing, pages 20--29, 1996. Journal version in Journal of Computer and System Sciences, 58:137--147, 1999.
[4]
B. Babcock and C. Olston. Distributed top-k monitoring. In Proceedings of ACM SIGMOD International Conference on Management of Data, 2003.
[5]
S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah. TelegraphCQ: continuous dataflow processing. In Proceedings of ACM SIGMOD International Conference on Management of Data, page 668, 2003.
[6]
D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong. Approximate data collection in sensor networks using probabilistic models. In IEEE International Conference on Data Engineering, 2006.
[7]
J. Considine, F. Li, G. Kollios, and J. Byers. Approximate aggregation techniques for sensor databases. In IEEE International Conference on Data Engineering, 2004.
[8]
G. Cormode and M. Garofalakis. Efficient strategies for continuous distributed tracking tasks. IEEE Data Engineering Bulletin, 28(1):33--39, March 2005.
[9]
G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed approximate query tracking. In Proceedings of the International Conference on Very Large Data Bases, 2005.
[10]
G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggregates in a networked world: Distributed tracking of approximate quantiles. In Proceedings of ACM SIGMOD International Conference on Management of Data, 2005.
[11]
G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. Journal of Algorithms, 55(1):58--75, 2005.
[12]
G. Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. In Proceedings of ACM Principles of Database Systems, 2005.
[13]
G. Cormode, S. Muthukrishnan, and W. Zhuang. What's different: Distributed, continuous monitoring of duplicate resilient aggregates on data streams. In IEEE International Conference on Data Engineering, 2006.
[14]
C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. Gigascope: A stream database for network applications. In Proceedings of ACM SIGMOD International Conference on Management of Data, pages 647--651, 2003.
[15]
A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Distributed set-expression cardinality estimation. In Proceedings of the International Conference on Very Large Data Bases, 2004.
[16]
A. Deshpande, C. Guestrin, S. R. Madden, J. M.Hellerstein, and W. Hong. Model-drive data acquisition in sensor networks. In Proceedings of the International Conference on Very Large Data Bases, 2004.
[17]
P. Flajolet and G. N. Martin. Probabilistic counting. In IEEE Conference on Foundations of Computer Science, pages 76--82, 1983. Journal version in Journal of Computer and System Sciences, 31:182--209, 1985.
[18]
M. Garofalakis. Special issue on in-network query processing. IEEE Data Engineering Bulletin, 28(1), March 2005.
[19]
M. Greenwald and S. Khanna. Power-conserving computation of order-statistics over sensor networks. In Proceedings of ACM Principles of Database Systems, pages 275--285, 2004.
[20]
C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Distributed regression: an efficient framework for modeling sensor network data. In Information Processing in Sensor Networks, 2004.
[21]
M. Hadjieleftheriou, J. W. Byers, and G. Kollios. Robust sketching and aggregation of distributed data streams. Technical Report 2005-11, Boston University Computer Science Department, 2005.
[22]
A. Jain, J. Hellerstein, S. Ratnasamy, and D. Wetherall. A wakeup call for internet monitoring systems: The case for distributed triggers. In Proceedings of the 3rd Workshop on Hot Topics in Networks (Hotnets), 2004.
[23]
S. Jain, K. Fall, and P. Rabin. Routing in a delay tolerant network. In ACM SIGCOMM, 2005.
[24]
S. Kashyap, S. Deb, K. V. M. Naidu, R. Rastogi, and A. Srinivasan. Efficient gossip-based aggregate computation. In Proceedings of ACM Principles of Database Systems, 2006.
[25]
D. Kempe, A. Dobra, and J. Gehrke. Computing aggregates using gossip. In IEEE Conference on Foundations of Computer Science, 2003.
[26]
D. Kempe, J. Kleinberg, and A. Demers. Spatial gossip and resource location protocols. In Proceedings of the ACM Symposium on Theory of Computing, 2001.
[27]
R. Keralapura, G. Cormode, and J. Ramamirtham. Communication-efficient distributed monitoring of thresholded counts. In Proceedings of ACM SIGMOD International Conference on Management of Data, 2006.
[28]
T. Loo, J. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative routing: Extensible routing with declarative queries. In ACM SIGCOMM, 2005.
[29]
S. Madden. Data management in sensor networks. In Proceedings of European Workshop on Sensor Networks, 2006.
[30]
S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: a Tiny AGgregation service for ad-hoc sensor networks. In Proceedings of Symposium on Operating System Design and Implementation, 2002.
[31]
S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB: an acquisitional query processing system for sensor networks. ACM Transactions on Database Systems, 30(1):122--173, 2005.
[32]
A. Manjhi, S. Nath, and P. Gibbons. Tributaries and deltas: Efficient and robust aggregation in sensor network streams. In Proceedings of ACM SIGMOD International Conference on Management of Data, 2005.
[33]
A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent items in distributed data streams. In IEEE International Conference on Data Engineering, pages 767--778, 2005.
[34]
S. Nath, P. B. Gibbons, S. Seshan, and Z. R.Anderson. Synopsis diffusion for robust aggrgation in sensor networks. In ACM SenSys, 2004.
[35]
C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed data streams. In Proceedings of ACM SIGMOD International Conference on Management of Data, 2003.
[36]
S. Rhea, G. Brighten, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, and Y. Harlan. OpenDHT: A public DHT service and its uses. In ACM SIGCOMM, 2005.
[37]
J. Rissanen. Modeling by shortest data description. Automatica, 14:465--471, 1978.
[38]
I. Sharfman, A. Schuster, and D. Keren. A geometric approach to monitoring threshold functions over distribtuted data streams. In Proceedings of ACM SIGMOD International Conference on Management of Data, 2006.
[39]
S. Zdonik, M. Stonebraker, M. Cherniack, and U. Cetintemel. The aurora and medusa projects. Bulletin of the Technical Committee on Data Engineering, pages 3--10, Mar. 2003.

Cited By

View all
  • (2023)Real-time Vehicular Pollution Detection Model using IoT and Distributed Streaming Techniques2023 3rd International Conference on Advanced Research in Computing (ICARC)10.1109/ICARC57651.2023.10145636(178-183)Online publication date: 23-Feb-2023
  • (2018)Moment-based quantile sketches for efficient high cardinality aggregation queriesProceedings of the VLDB Endowment10.14778/3236187.323621211:11(1647-1660)Online publication date: 1-Jul-2018
  • (2018)DHTJoinDistributed and Parallel Databases10.1007/s10619-009-7054-726:2-3(291-317)Online publication date: 27-Dec-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD '07: Proceedings of the 2007 ACM SIGMOD international conference on Management of data
June 2007
1210 pages
ISBN:9781595936868
DOI:10.1145/1247480
  • General Chairs:
  • Lizhu Zhou,
  • Tok Wang Ling,
  • Program Chair:
  • Beng Chin Ooi
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 June 2007

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. data streams
  2. distributed data
  3. sensor networks

Qualifiers

  • Article

Conference

SIGMOD/PODS07
Sponsor:

Acceptance Rates

Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)12
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Real-time Vehicular Pollution Detection Model using IoT and Distributed Streaming Techniques2023 3rd International Conference on Advanced Research in Computing (ICARC)10.1109/ICARC57651.2023.10145636(178-183)Online publication date: 23-Feb-2023
  • (2018)Moment-based quantile sketches for efficient high cardinality aggregation queriesProceedings of the VLDB Endowment10.14778/3236187.323621211:11(1647-1660)Online publication date: 1-Jul-2018
  • (2018)DHTJoinDistributed and Parallel Databases10.1007/s10619-009-7054-726:2-3(291-317)Online publication date: 27-Dec-2018
  • (2016)Scalable Approximate Query Tracking over Highly Distributed Data StreamsProceedings of the 2016 International Conference on Management of Data10.1145/2882903.2915225(1497-1512)Online publication date: 26-Jun-2016
  • (2015)Big data analytics: a literature reviewJournal of Management Analytics10.1080/23270012.2015.10824492:3(175-201)Online publication date: 13-Oct-2015
  • (2014)Distributed Geometric Query Monitoring Using Prediction ModelsACM Transactions on Database Systems10.1145/260213739:2(1-42)Online publication date: 26-May-2014
  • (2014)Communication-efficient processing of multiple continuous aggregate queriesInformation Sciences10.1016/j.ins.2014.06.044284(1-17)Online publication date: Nov-2014
  • (2014)Querying Distributed Data StreamsAdvances in Databases and Information Systems10.1007/978-3-319-10933-6_1(1-10)Online publication date: 2014
  • (2013)The continuous distributed monitoring modelACM SIGMOD Record10.1145/2481528.248153042:1(5-14)Online publication date: 1-May-2013
  • (2012)Prediction-based geometric monitoring over distributed data streamsProceedings of the 2012 ACM SIGMOD International Conference on Management of Data10.1145/2213836.2213867(265-276)Online publication date: 20-May-2012
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media