skip to main content
article

The spin-wave nanoscale reconfigurable mesh and the labeling problem

Published: 01 July 2007 Publication History

Abstract

In this article, we present a nanoscale reconfigurable mesh which is interconnected by ferromagnetic spin-wave buses. In this architecture, unlike the traditional spin-based nano structures which transmit charge, waves are transmitted. As a result, the power consumption of the proposed modules can be low. This reconfigurable mesh, while requiring the same number of switches and buses as the standard reconfigurable mesh, is capable of simultaneously transmitting N waves on each of the spin-wave buses. Because of this highly parallel feature, very fast and fault-tolerant algorithms can be designed. To illustrate the superior performance of the proposed spin-wave reconfigurable mesh, we present three fast labeling algorithms.

References

[1]
Alnuweiri, H. M. 1994. Constant-time parallel algorithms for image labeling on a reconfigurable network of processors. IEEE Trans. Parall. Distrib. Syst. 5, 3, 320--326.
[2]
Bhagavathi, D., Gurla, H., Olariu, S., Schwing, J. L., and Stojmenovic, I. 1995. Time-optimal visibility-related algorithms on meshes with multiple broadcasting. IEEE Trans. Parall. Distrib. Syst. 6, 687--703.
[3]
Chin, D., Passe, J., Bernard, F., Taylor, H., and Knight, S. 1988. The Princeton engine: A real-time video system simulator. IEEE Trans. Consum. Electr. 32, 2, 285--297.
[4]
Covington, M., Crawford, T. M., and Parker, G. J. 2002. Time-resolved measurement of propagating spin-waves in ferromagnetic thin films. Physic. Rev. Lett. 89, 23, 237202-1-4.l.
[5]
Cypher, R., Sanz, J. L. C., and Snyder, L. 1987. EREW PRAM and mesh connected computer algorithms for image component labeling. In Proceeding of IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence. 122--128.
[6]
Dehon, A. 2003. Array-based architecture for FET-based, nano-scale electronics. IEEE Trans. Nanotechn. 2, 1, 23--32.
[7]
Duff, M. J. B. 1982. CLIP4. Special Comput. Architect. Patt. Process. 65--86.
[8]
Eshaghian-Wilner, M. M. 1991. Parallel algorithms for image processing on OMC. IEEE Trans. Comput. 40, 7, 827--833.
[9]
Eshaghian-Wilner, M. M., Flood, A. H., Khitun, A., Stoddart, J. F., and Wang, K. L. 2006. Molecular and nano-scale computing and technology. In Handbook of Innovative Computing. Albert Zomaya, Ed. Springer-Verlag, 477--510.
[10]
Eshaghian-Wilner, M. M. and Hai, L. 2001. An optical interconnected reconfigurable mesh. J. Parall. Distrib. Comput. 61, 6 (June), 737--747.
[11]
Eshaghian-Wilner, M. M., Khitun, A., Navab, S., and Wang, K. L. 2006. A nanoscale reconfigurable mesh with spin-waves. In ACM International Conference on Computing Frontiers. 65--70.
[12]
Eshaghian-Wilner, M. M., Khitun, A., Navab, S., and Wang, K. L. 2006. Hierarchical multi-scale architectures with spin waves. In Proceedings of the International Conference on Computing in Nanotechnology (WORLDCOMP'06). Las Vegas, NV. 26--29.
[13]
Eshaghian-Wilner, M. M., Kim, K., Nash, G., and Shu, D. B. 1991. Implementation and application of a gated connection network in image understanding architecture. Reconfigurable Massively Parallel Computers, by H. Li and Q. Stout. Prentice Hall.
[14]
Eshaghian-Wilner, M. M. and Miller, R. 2004. The systolic reconfigurable mesh. J. Parall. Process. Lett. 14, 3-4, 337--350.
[15]
Fountain, T., Matthews, K., and Duff, M. 1988. The CLIP7A image processor. IEEE Patt. Analy. Mach. Intell. 10, 3, 310--319.
[16]
Hammerstrom, D. W. and Lulich, D. P. 1996. Image processing using one-dimensional processor arrays. IEEE Proceedings 84, 7, 1005--1018.
[17]
Herbordt, M. C., Weems, C. C., and Scudder, M. J. 1992. Non-uniform region processing on SIMD arrays using the coterie network. Mach. Vision Applic. 5, 2, 105--125.
[18]
Jang, J., Park, H., and Prasanna, V. K. 1995. A fast algorithm for computing a histogram on reconfigurable mesh. IEEE Trans. Patt. Analy. Mach. Intell. 17, 97--106.
[19]
Jenq, J.-F. and Sahni, S. 1992. Histogramming on a reconfigurable mesh computer. In Proceedings of the 6th International Parallel Processing Symposium. Beverly Hills, CA, 425--432.
[20]
Kalinikos, B. A., Kovshikov, N. G., Kostylev, M. P., and Benner, H. 1998. Parametric frequency conversion with amplification of a weak spin-wave in a ferrite film. IEEE Trans. Magnetics 34, 4, 1393--1395.
[21]
Khitun, A., Bao, M., Lee, J-Y., Wang, K. L., Lee, D. W., Wang, S., and Roshchin, I. 2006. Inductively coupled circuits with spin wave bus for information processing. Submitted for publication in IEEE Trans. Electron Devices.
[22]
Khitun, A., Ostroumov, R., and Wang, K. L. 2001. Spin-wave utilization in a quantum computer. Physic. Rev. 64, 6, 062304/1--5.
[23]
Khitun, A. G., Ostroumov, R., and Wang, K. L. 2003. Feasibility study of the spin-wave quantum network. In Proceedings of the SPIE (The International Society for Optical Engineering) 5023, 449--451.
[24]
Khitun, A. and Wang, K. L. 2005. Nano scale computational architectures with spin-wave bus. Superlattices Microstructures 38, 3, 184--200.
[25]
Miller, R., Prasanna-Kumar, V., Reisis, D., and Stout, Q. 1988. Meshes with reconfigurable buses. In Proceedings of the 5th MIT Conference on Advanced Research in VLSI. Boston, MA.
[26]
Miller, R., Prasanna Kumar, V. K., Reisis, D. I., and Stout, Q. F. 1993. Parallel computations on reconfigurable meshes. IEEE Trans. Comput. 42, 678--692.
[27]
Miller, R. and Stout, Q. F. 1985. Geometric algorithms for digitized pictures on a mesh-connected computer. IEEE Trans. Patt. Analy. Mach. Intell. 7, 216--228.
[28]
Ohno, Y., Young, D. K., Beschoten, B., Matsukura, F., Ohno, H., and Awshalom, D. D. 1999. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 6763, 790--792.
[29]
Prasanna-Kumar, V. K. and Eshaghian, M. M. 1986. Parallel geometric algorithm for digitized pictures on mesh of trees. In Proceedings of IEEE International Conference on Parallel Processing.
[30]
Roska, T. 2001. AnaLogic Wave computers-wave-type algorithms: Canonical description, computer classes, and computational complexity. The IEEE International Symposium on Circuits and Systems. Piscataway, NJ.
[31]
Silva, T. J., Lee, C. S., Crawford, T. M., and Rogers, C. T. 1999. Inductive measurement of ultrafast magnetization dynamics in thin-film permalloy. J. Appl. Phys. 85, 11, 7849--7862.
[32]
Weem, C. C., Levitan, S. P., Hanson, A. R., Riseman, E. M., Nash, J. G., and Shu, D. B. 1987. The image understanding architecture. Tech. Rep. 87--76, University of Massachusetts.
[33]
Wu, M., Patton, C. E., and Kalinikos, B. A. 2005. Generation of spin wave envelope solitons through modulational instability, integrable systems, and applications. International Conference on Nonlinear Waves.

Cited By

View all

Index Terms

  1. The spin-wave nanoscale reconfigurable mesh and the labeling problem

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Journal on Emerging Technologies in Computing Systems
    ACM Journal on Emerging Technologies in Computing Systems  Volume 3, Issue 2
    July 2007
    138 pages
    ISSN:1550-4832
    EISSN:1550-4840
    DOI:10.1145/1265949
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 01 July 2007
    Published in JETC Volume 3, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Spin waves
    2. image processing
    3. nanoscale architectures
    4. reconfigurable mesh

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2016)NANOCOMPUTING AND CLOUD COMPUTINGWireless Computing in Medicine10.1002/9781118993620.ch2(17-40)Online publication date: Jul-2016
    • (2009)Efficient parallel processing with spin-wave nanoarchitecturesThe Journal of Supercomputing10.1007/s11227-008-0237-649:2(248-267)Online publication date: 1-Aug-2009
    • (2009)Nanoscale Standard Digital ModulesBio‐Inspired and Nanoscale Integrated Computing10.1002/9780470429983.ch9(243-261)Online publication date: 24-Nov-2009
    • (2009)Parallel Computing with Spin WavesBio‐Inspired and Nanoscale Integrated Computing10.1002/9780470429983.ch8(225-241)Online publication date: 24-Nov-2009

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media