skip to main content
article

Wrinkled flames and cellular patterns

Published: 29 July 2007 Publication History

Abstract

We model flames and fire using the Navier-Stokes equations combined with the level set method and jump conditions to model the reaction front. Previous works modeled the flame using a combination of propagation in the normal direction and a curvature term which leads to a level set equation that is parabolic in nature and thus overly dissipative and smooth. Asymptotic theory shows that one can obtain more interesting velocities and fully hyperbolic (as opposed to parabolic) equations for the level set evolution. In particular, researchers in the field of detonation shock dynamics (DSD) have derived a set of equations which exhibit characteristic cellular patterns. We show how to make use of the DSD framework in the context of computer graphics simulations of flames and fire to obtain interesting features such as flame wrinkling and cellular patterns.

Supplementary Material

JPG File (pps047.jpg)
MP4 File (pps047.mp4)

References

[1]
Adabala, N., and Hughes, C. E. 2004. A parametric model for real-time flickering fire. In Proc. of Comput. Anim. and Social Agents (CASA).
[2]
Aslam, T., Bdzil, J., and Stewart, D. S. 1996. Level set methods applied to modeling detonation shock dynamics. J. Comput. Phys. 126, 390--409.
[3]
Aslam, T. D. 1996. Investigations on detonation shock dynamics. PhD thesis, University of Illinois at Urbana-Champaign.
[4]
Beaudoin, P., Paquet, S., and Poulin, P. 2001. Realistic and Controllable Fire Simulation. In Proc. of Graph. Interface 2001, 159--166.
[5]
Bin Zafar, N., Falt, H., Ali, M. Z., and Fong, C. 2004. Dd::fluid::solver::solverfire. In SIGGRAPH 2004 Sketches & Applications, ACM Press.
[6]
Bukowski, R., and Sequin, C. 1997. Interactive Simulation of Fire in Virtual Building Environments. In Proc. of SIGGRAPH 1997, ACM Press / ACM SIGGRAPH, Comput. Graph. Proc., Annual Conf. Series, ACM, 35--44.
[7]
Chiba, N., Muraoka, K., Takahashi, H., and Miura, M. 1994. Two dimensional Visual Simulation of Flames, Smoke and the Spread of Fire. J. Vis. and Comput. Anim. 5, 37--53.
[8]
Dervieux, A., and Thomasset, F. 1979. A finite element method for the simulation of a Rayleigh-Taylor instability. Lecture Notes in Math. 771, 145--158.
[9]
Dervieux, A., and Thomasset, F. 1981. Multifluid incompressible flows by a finite element method. Lecture Notes in Phys. 141, 158--163.
[10]
Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736--744.
[11]
Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15--22.
[12]
Feldman, B. E., O'Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 708--715.
[13]
Geiger, W., Rasmussen, N., Hoon, S., and Fedkiw, R. 2003. Big bangs. In SIGGRAPH 2003 Sketches & Applications, ACM Press.
[14]
Geiger, W., Rasmussen, N., Hoon, S., and Fedkiw, R. 2005. Space battle pyromania. In SIGGRAPH 2005 Sketches & Applications, ACM Press.
[15]
Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 915--920.
[16]
Inakage, M. 1989. A Simple Model of Flames. In Proc. of Comput. Graph. Int. 89, Springer-Verlag, 71--81.
[17]
Kim, B.-M., Liu, Y., Llamas, I., and Rossignac, J. 2006. Advections with significantly reduced dissipation and diffusion. IEEE Trans. on Vis. and Comput. Graph. In Press.
[18]
Lamorlette, A., and Foster, N. 2002. Structural modeling of flames for a production environment. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 729--735.
[19]
Losasso, F., Irving, G., Guendelman, E., and Fedkiw, R. 2006. Melting and burning solids into liquids and gases. IEEE Trans. on Vis. and Comput. Graph. 12, 3, 343--352.
[20]
Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 812--819.
[21]
Markstein, G. 1964. Nonsteady Flame Propagation. Pergamon Press.
[22]
Mazarak, O., Martins, C., and Amanatides, J. 1999. Animating exploding objects. In Proc. of Graph. Interface 1999, 211--218.
[23]
Melek, Z., and Keyser, J. 2002. Interactive simulation of fire. In Pacific Graph., 431--432.
[24]
Melek, Z., and Keyser, J. 2003. Interactive simulation of burning objects. In Pacific Graph., 462--466.
[25]
Melek, Z., and Keyser, J. 2005. Multi-representation interaction for physically based modeling. In ACM Symp. on Solid and Physical Modeling, 187--196.
[26]
Melek, Z., and Keyser, J. 2006. Bending burning matches and crumpling burning paper. In Poster, SIGGRAPH Proc., ACM.
[27]
Musgrave, F. K. 1997. Great Balls of Fire. In SIGGRAPH 97 Animation Sketches, Visual Proceedings, 259--268.
[28]
Neff, M., and Fiume, E. 1999. A visual model for blast waves and fracture. In Proc. of Graph. Interface 1999, 193--202.
[29]
Nguyen, D., Fedkiw, R., and Kang, M. 2001. A boundary condition capturing method for incompressible flame discontinuities. J. Comput. Phys. 172, 71--98.
[30]
Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically based modeling and animation of fire. ACM Trans. Graph. (SIGGRAPH Proc.) 29, 721--728.
[31]
O'brien, J., and Hodgins, J. 1999. Graphical modeling and animation of brittle fracture. In Proc. of SIGGRAPH 1999, 137--146.
[32]
Osher, S., and Sethian, J. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12--49.
[33]
Pegoraro, V., and Parker, S. G. 2006. Physically-based realistic fire rendering. In Eurographics Workshop on Natural Phenomena (2006), E. Galin and N. Chiba, Eds., 237--244.
[34]
Perry, C., and Pigaro, R. 1994. Synthesizing Flames and their Spread. SIGGRAPH 94 Technical Sketches Notes (July).
[35]
Rasmussen, N., Nguyen, D., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 703--707.
[36]
Rushmeier, H. E., Hamins, A., and Choi, M. 1995. Volume Rendering of Pool Fire Data. IEEE Comput. Graph, and Appl. 15, 4, 62--67.
[37]
Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 910--914.
[38]
Selle, A., Fedkiw, R., Kim, B.-M., Liu, Y., and Rossignac, J. 2007. An unconditionally stable maccormack method. J. Set. Comput. in review. http://graphics.stanford.edu/~fedkiw/.
[39]
Stam, J., and Fiume, E. 1995. Depicting Fire and Other Gaseous Phenomena Using Diffusion Process. In Proc. of SIGGRAPH 1995, 129--136.
[40]
Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121--128.
[41]
Yao, J., and Stewart, D. S. 1996. On the dynamics of multidimensional detonation. J. Fluid Mech. 309, 225--275.
[42]
Yngve, G. D., O'brien, J. F., and Hodgins, J. K. 2000. Animating explosions. In Proc. of ACM SIGGRAPH 2000, 29--36.
[43]
Zhao, Y, Wei, X., Fan, Z., Kaufman, A., and Qin, H. 2003. Voxels on fire. In Proc. of IEEE Vis., 271--278.

Cited By

View all
  • (2024)Visualization of Vector Fields from Density Data Using Moving Least Squares Based on Monte Carlo MethodJournal of the Korea Computer Graphics Society10.15701/kcgs.2024.30.2.130:2(1-9)Online publication date: 1-Jun-2024
  • (2024)A Framework for Solving Parabolic Partial Differential Equations on Discrete DomainsACM Transactions on Graphics10.1145/366608743:5(1-14)Online publication date: 25-Jun-2024
  • (2023)GARM-LS: A Gradient-Augmented Reference-Map Method for Level-Set Fluid SimulationACM Transactions on Graphics10.1145/361837742:6(1-20)Online publication date: 5-Dec-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 26, Issue 3
July 2007
976 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1276377
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 July 2007
Published in TOG Volume 26, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. cellular patterns
  2. combustion
  3. fire
  4. flame

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)12
  • Downloads (Last 6 weeks)4
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Visualization of Vector Fields from Density Data Using Moving Least Squares Based on Monte Carlo MethodJournal of the Korea Computer Graphics Society10.15701/kcgs.2024.30.2.130:2(1-9)Online publication date: 1-Jun-2024
  • (2024)A Framework for Solving Parabolic Partial Differential Equations on Discrete DomainsACM Transactions on Graphics10.1145/366608743:5(1-14)Online publication date: 25-Jun-2024
  • (2023)GARM-LS: A Gradient-Augmented Reference-Map Method for Level-Set Fluid SimulationACM Transactions on Graphics10.1145/361837742:6(1-20)Online publication date: 5-Dec-2023
  • (2021)Visual Simulation of Turbulent Foams by Incorporating the Angular Momentum of Foam Particles into the Projective FrameworkApplied Sciences10.3390/app1201013312:1(133)Online publication date: 23-Dec-2021
  • (2021)Learning Representation of Secondary Effects for Fire-Flake AnimationIEEE Access10.1109/ACCESS.2021.30540619(17620-17630)Online publication date: 2021
  • (2020)A level-set method for magnetic substance simulationACM Transactions on Graphics10.1145/3386569.339244539:4(29:1-29:13)Online publication date: 12-Aug-2020
  • (2020)Synthesizing Large‐Scale Fluid Simulations with Surface and Wave Foams via Sharp Wave Pattern and Cloudy FoamComputer Animation and Virtual Worlds10.1002/cav.198432:2Online publication date: 4-Dec-2020
  • (2019)Lattice-Boltzmann and Eulerian Hybrid for Solid Burning SimulationSymmetry10.3390/sym1111140511:11(1405)Online publication date: 14-Nov-2019
  • (2019)Fire Sprite Animation Using Fire-Flake Texture and Artificial Motion BlurIEEE Access10.1109/ACCESS.2019.29341637(110002-110011)Online publication date: 2019
  • (2018)Retracted: Unified Framework for Efficient and Enriched Water Animation with Surface and Wave FoamsComputer Graphics Forum10.1111/cgf.1345438:1(690-690)Online publication date: 28-Jun-2018
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media