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ABSTRACT
A series of evolutionary neural network simulations are
presented which explore the hypothesis that learning factors
can result in the evolution of long periods of parental
protection and late onset of maturity.  By evolving
populations of neural networks to learn quickly to perform
well on simple classification tasks, it is shown that better
learned performance is obtained if protection from
competition is provided during the network’s early learning
period.  Moreover, if the length of the protection period is
allowed to evolve, it does result in the emergence of relatively
long protection periods, even if there are other costs involved,
such as individuals not being allowed to reproduce during
their protection phase, and the parents suffering increased risk
of dying while protecting their offspring.

Categories and Subject Descriptors
I.2.11 [Artificial Intell igence]: Distributed Artificial
Intelligence – intelligent agents, multiagent systems.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Artificial Life, Evolution, Learning, Life Histories.

1. INTRODUCTION
The processes of birth, maturation, reproduction and death
vary considerably between species, and understanding how the
various life histories came about through evolution remains a
major research area (e.g., [9, 16]).  The idea of trade-offs in life
history evolution is now well established (e.g., [15]), with
classic examples including the trade-off between reproduction
and growth [19], and between nursing and survival [7].  There
also appear to exist correlations between other aspects of life
histories, for example, fixed ratios within lineages of lifespan
to age of maturity [6, 10].  The diversity of species that have
existed reflect the different ways the trade-offs can be balanced
under different environmental conditions.

In this paper, one particular trade-off is considered, namely
the advantage of parents providing long periods of protection
for their offspring, against increased risk of death for the
parents, and delayed reproductive activity in the young.  In
nature, such protection varies enormously from precocial
species in which the young are born well developed and
requiring virtually no protection, to altricial species in which
the young are born helpless and require long periods of
parental care before they are able to survive on their own.  It
might seem obvious that early maturity is advantageous
because it increases the chance that individuals will survive to
maturity, and decreases the time wasted not reproducing [8].
However, if parents protect their young, the first advantage
will be less relevant, and the second may be balanced by
improved performance later in life with increased reproduction
overall.  In fact, there are many factors involving growth, size,
fecundity, environment and so on, known to affect the age at
maturity (e.g., [16]).  One major advantage of simplified
Artificial Life simulations is that one can explore individual
factors without all the confounds inherent in empirical
measurements of existing biological populations.  In this
paper, one factor in life history evolution is studied, that
appears to have not received much attention before, namely the
effect of individuals needing to learn within their own
lifetimes, and how that can affect the optimal period of
protection parents should offer their young.  

This study was prompted by the fact that human infants are
particularly altricial, even compared with other primates,
requiring extended periods of parental protection and support
(e.g., [13]).  There are many factors that could affect this (e.g.,
[12, 14]), but two crucial processes are known to take place in
altricial species during the protection stage – the infants are
growing, and they are learning.  Human infants do need to
grow considerably after birth, and parental protection provides
obvious survival advantages.  Learning is also important for
humans, and in other species for which relatively complex
behaviour is required, since the environment is unpredictable,
and adaptation is needed to cope with rapid growth.
Otherwise, innate behaviour would be adequate.  The question
this paper addresses is: to what extent can learning issues
influence the evolution of long protection periods?  This i s
done by simulating the evolution of populations of neural
networks that must learn quickly how to perform well on
simplified classification tasks.  With individuals of all ages
competing for survival based on their learned performance, the
effect of different protection periods can be explored.
Allowing the protection period to evolve shows how the
advantages of protection trade-off against the associated
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disadvantages so that a particular protection period emerges
through evolution.

The next section describes the neural network systems that
are evolved.  Section 3 then studies the populations that
emerge for a selection of fixed protection periods, before the
protection period itself is allowed to evolve as discussed in
Section 4.  The properties of the evolved populations and the
associated trade-offs are analyzed in Section 5, and the paper
ends with some discussion and conclusions in Section 6.

2. EVOLVING NEURAL NETWORKS
The aim here is to simulate the crucial features of the evolution
of most animal populations, with particular emphasis on the
aspects of fitness associated with learning.  Since neural
networks, or brains, are largely responsible for learning in
animals, our animal populations will be represented by simple
artificial neural networks.  A population of individual neural
networks (each specified by a set of innate parameters) i s
therefore maintained, that must learn from a continuous stream
of input patterns how to classify future input patterns.  Those
inputs could, for example, correspond to relevant features of
other animals, and the desired output classes could correspond
to properties such as being edible or dangerous.  The fitness of
each individual is defined as how well it classifies the new
inputs before discovering its correct class and training on it.
Requiring the individuals to compete to survive and procreate,
according to their relative fitness, should lead to the
emergence of populations of increasing fitness.  To compete
effectively in a population consisting of individuals of all
ages, each individual must not only learn how to perform well,
but must also be able to learn quickly how to achieve that good
performance, or at least quickly enough that it can survive
after its parents have withdrawn their protection.

For the simulations, a specific concrete system is clearly
needed, and it makes sense to follow one that has already
proved instructive and been described in detail elsewhere [2, 4,
5].  Consequently, traditional fully connected Multi-Layer
Perceptron neural networks were used, with one hidden layer,
sigmoidal processing units, and trained by gradient descent
using the cross-entropy error function on simple classification
tasks.  Since most real-world classification tasks involve
learning non-linear classification boundaries in a space of real
valued inputs, the set of classification tasks chosen were two
dimensional continuous input spaces with particular circular
classification boundaries.  These proved simple enough to
allow extensive simulations, yet recreated the crucial features
and difficulties of real world problems.  Each individual
network was assigned a randomly chosen classification
boundary of this type to learn from a stream of randomly
drawn data points from the input space that was normalized to
a unit square.  Then its fitness was its generalization ability,
i.e. the average number of correct classifications (e.g., outputs
within 0.2 of the binary targets) before training on them.  The
extent to which real parental protection affects the training
data available for the infants will be left open by keeping the
nature of the training data constant across all cases.  As will be
seen later, the key learning effect emerges without the need to
take this complication into account.

An important feature of human learning of relevance here i s
the fact that for many skills there are critical periods after
which further learning becomes more difficult [1, 11].  It has
already been demonstrated elsewhere that evolving neural
network learning rates that vary during the learning process
does lead to improved learning performance, and that the
evolved time dependencies are qualitatively similar to human
like age dependencies [3, 5].  Such time t dependent learning
rates ηL(t) can be conveniently approximated by introducing a
simple two parameter exponential scale factor s(t):

ηL (t) =  s(t) ηL (0)     ,    s(t) =  β +  (1− β) e−t / τ

in which the baseline β and the time constant τ are evolved to
take on the positive values that result in the best performance.
If time dependence proves not to be beneficial, the parameters
will evolve so that s(t) = 1.  The subscript L is introduced
because earlier studies [2, 4] have shown empirically that
better performance is obtained by evolving separate learning
rates ηL and random initial weight distributions [-rL, +rL] for
each of the four distinct network components L (the input to
hidden weights IH, the hidden unit biases HB, the hidden to
output weights HO, and the output unit biases OB), rather than
having identical parameters across the whole network.  The two
variable plasticity parameters β and τ, four learning rates ηL,
four initial weight parameters rL, together with a standard
momentum parameter α  and weight decay regularization
parameter λ , give twelve real valued evolvable innate
parameters in all for each network.  Since evolving the number
of hidden units invariably resulted in the maximum allowed
number being used, this was fixed at 20 for all networks, which
was more than enough for learning the given tasks.

For the artificial life simulations proposed here, there is a
clear need to tie in the neural network learning time-scales
with the lifetime and evolutionary time-scales, so a “simulated
year of experience” was defined to be 1200 training data
samples, and the fitness of each individual was computed at
the end of each simulated year as the average over that year.  A
fixed computationally feasible population size of 200 was
maintained throughout, with individuals that die being
replaced by children of the most fit individuals.  Deaths
occurred due to old age, or by losing a  fitness comparison
“fight” against other individuals.  The details of such factors
needed to be fixed to encourage evolutionary change and to
preserve a reasonably diverse population, but the precise
specification proved not to affect the qualitative results a great
deal, so convenient “round numbers” were chosen for the
parameter values.  Old age deaths were taken to occur each year
for a random 20% of individuals aged over 30 years, which
allowed enough training samples to learn the given tasks, yet
prevented the populations becoming dominated by a few very
old and very fit individuals.  In addition, each year all the
unprotected individuals were forced to compete with a random
other eligible individual, and would die if their fitness was
lower than their competitor.  Deaths in this way were limited to
10% of the population each year, so that a reasonable
population age distribution was preserved.  The children were
created by cross-over and mutation from two parents chosen
by pair-wise fitness comparisons of the eligible individuals.
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This was implemented by having each child inherit innate
parameters chosen randomly from the corresponding ranges
spanned by its two parents, plus a random mutation (from a
Gaussian distribution) that gave it a reasonable chance of
falling outside that range.  All these details are clearly gross
over-simplifications of real biological systems, but they do
constitute a manageable starting point that includes
approximations of all the key processes.  

Such an evolutionary process has been shown to work
before [5].  The crucial extra feature here is that the children are
protected by their parents until they reach a certain age and
cannot be killed by competitors before then.  (For simplicity,
the parents here are assumed to be perfect protectors, though in
reality their own fitness will normally affect their protection
abilities, as will the number of children they are protecting at
any given time.)  There is an implicit cost to the parents in that
the more children are protected, the higher the chance they
stand of being in the 10% of the population that are die
through competition each year.  (This is another over-
simplification, adequate for present purposes, but a better
account of the reproductive and protection costs will be
required for more realistic models.)  A cost the children must
bear is that they are prevented from having any children of
their own before they leave the protection of their parents.
(This may be a reasonable approximation for some species, and
a suitable starting point for this general study, but will need
more careful consideration in more focused future work.)  The

remainder of this paper will explore how the protection period
affects the performance of the evolved individuals, and what
protection period emerges if it is left free to evolve in the same
way as all the other innate parameters.

3. SIMULATION RESULTS FOR FIXED
PROTECTION PERIODS
The obvious starting point was to carry out the evolutionary
neural network simulations for each of various fixed
protection periods and determine if there were any differences
between the evolved populations.  The learning time-scale was
set so that individuals typically learn the given task in 10 to
20 simulated years, and they start dying of old age after 30
years, so it made good sense to begin by looking at protection
periods of 1, 10 and 20 years.  The evolution of the learning
rates for these three cases are shown in Figure 1, with means
and variances over six runs (which were sufficient to establish
statistically significant results).  The evolved parameters and
low variances across runs are similar to those found in earlier
studies [5].  Subtle differences, however, can be seen between
the final parameter values, and the evolutionary process i s
noticeably slower to settle down for the longer protection
periods.  The fourth graph in Figure 1 compares the
generalization error performance means across populations
during evolution for each protection period.  It seems that the
two longer protection periods do  have an advantage in this
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Figure 1:  Learning rate evolution for fixed protection periods of 1, 10 and 20 years, and comparison of the corresponding performance error rates.
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respect.   However, such population means hide complex age
dependent error distributions, and the population age
distributions are likely to vary considerably between cases, so
this is not sufficient to show that extended protection periods
will have an evolutionary advantage.  What needs to be done i s
explicitly simulate the evolution of the protection period
along with everything else.

4. SIMULATION RESULTS FOR EVOLVED
PROTECTION PERIODS
When the protection period is allowed to evolve, the evolution
of that period and the associated learning rates are as shown in
Figure 2, again with means and variances over six runs.  Early
on during the evolution, while the populations are still
performing relatively poorly, the protection period rises
rapidly to about 17 years, but then falls slightly, settling
down at around 15 years.  

The length of the protection period, whether it is fixed (at
1, 10, 20 years) or evolved (leading to Ev ≈ 15 years), has a
clear effect on the various age dependencies.  On the left of
Figure 3 is shown how increased protection periods result in
lengthening of the period during which the learning rates
remain relatively high.  There is clearly no need to rush the
learning while being protected.  There are also wide variations

in the age distributions of the evolved populations, as shown
on the right of Figure 3.  Each age distribution is fairly flat
during the protection period, and then falls off due to
competition until the individuals start dying of old age from
the age of 30, at which point there is an exponential fall
towards zero.  These different patterns of learning and age
distributions will obviously affect the other properties of the
evolved populations.  The averages and variances of the
crucial evolved properties are compared in Figure 4, for the
various protection periods.  As one might expect, the number
of deaths per year due to competition decreases, from the
maximum of 20 per year, as the protection period increases,
and this inevitably increases the average age of the
population.  As a consequence, more individuals survive to
old age, and so the deaths per year due to old age increase
slightly.  Overall, there is still a net reduction in the number of
deaths per year, and so, given the fixed population size, the
average number of children per individual at any given time
decreases with the protection period.  Finally, it can be seen
that the average population performance error rate (i.e. inverse
fitness) falls steadily with increasing protection period.

It is reassuring to see that all the observed trends vary
monotonically with protection period length, and the evolved
protection period population results are consistent with what
would be expected from their evolved period of around 15

150000100000500000
-4

-2

0

2

4

Year

lo
g 

et
a

etaHO

etaIH

etaHB

etaOB

E v

                        
150000100000500000

0

8

16

24

Year

Pr
ot

.

Figure 2:  Learning rate evolution when the protection period is allowed to evolve (left), and the evolution of the protection period (right).
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years.  The important issue to consider now is why, given that
the average population fitness increases with protection
period, does the evolved protection withdrawal age not end up
higher than 15?  Figures 3 and 4 already provide some clues.
First, older individuals will obviously have had more time to
learn, so they should be fitter by our criteria, and hence the
increases in average age of the population will automatically
translate into an increased population fitness, even if each
individual were no better as a result of the protection period.
Moreover, even though there probably are individual fitness
advantages too, the reduced number of children per individual
that emerge for increased protection periods will place
individuals with longer protection periods at an evolutionary
disadvantage, and this is likely to result in a decrease in the
evolved protection period.  Once again there are trade-offs
between the relevant factors, and to understand them fully, one
needs to look more carefully at the individual fitness profiles.
A more detailed analysis of the evolved populations is
presented in the next section.

5. ANALYSIS Of THE EVOLVED
POPULATIONS
The means and variances of the individual performance error
rates (i.e. inverse fitness) during learning are plotted in Figure
5, and there do indeed appear to be significant reductions in
the mean errors after protracted protection periods, but with

consequent delays in reaching those lower error rates.
However, the error distributions for this type of problem are
known to be rather skewed, with the residual mean errors being
due to long tails of extremely large errors.  Such consequences
of risky learning strategies are an unfortunate evolutionary
side effect of the pressure to learn quickly [5], that extended
protection periods may be expected to help with.  The median
learning performances shown on the left of Figure 6 are not
affected by the long tails of the distributions, and indicate
essentially perfect performance by age 12 for all protection
periods, though with the expected slower learning for longer
protection periods.  The error distributions between ages 50
and 60, shown on the right of Figure 6, give an idea of the
extent of the small numbers of persistent large errors.  As one
would expect at that age, there is a massive peak around zero
errors, but there remain a significant number of very large
errors.  As noted above, this is a common problem of
evolutionary processes that encourage fast learning [5], and
long protection periods do seem to alleviate it.  The upper and
lower quartile error rates are shown in Figure 7.  These confirm
the expectation that longer protection periods will slow the
learning, and also confirm the improvement in learned
performance at the poorer performing end of the spectrum.

Interestingly, allowing evolved age dependent plasticity
has a significant effect on what emerges.  Without it, rather
different median learning performances and error distributions
are obtained, as shown in Figure 8.  There is now relatively
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little difference between the median performances, but much
greater differences in the instances of very large errors.  This
confirms the importance of including in the simulations as
many known features of real learning systems as possible.

6. DISCUSSION AND CONCLUSIONS
The above simulations and analyses have established that
longer protection periods do offer clear learning advantages,
and relatively few disadvantages.  Nevertheless, there is still a
need to consider the underlying trade-offs more carefully, in
order to understand what prevents even longer evolved
protection periods from emerging.  First, however, a check i s
required to verify that the evolved protection period found i s
not simply some artifact of the chosen evolutionary process,
perhaps corresponding to a local optimum of fitness and/or
lack of population diversity.  This can be conveniently tested
by allowing the protection period in the three fixed period
evolved populations to evolve away from their previously
fixed values.  The results of this are shown on the left of Figure
9, with means and variances across six runs.  In each case there
is a relatively fast rise or fall to the same evolved period of
around 15 years that emerged before.  A second test involves
combining evolved populations from all four cases (the three
different fixed period runs, and one evolved period run) into

one big population, and allowing natural selection to take its
course.  Since each population had already been optimized by
evolution, the children inherited characteristics from just their
fittest parent, with no further crossover or mutation allowed.
The outcome of this process is shown on the right of Figure 9,
with means and variances across twelve runs.  The individuals
with the evolved protection period consistently come to
dominate the whole population.  Individuals that get virtually
no parental protection are wiped out almost immediately.

Overall, the simulations show that, although there are clear
learning advantages to having longer protection periods,
extending those protection periods into effectively fixed life-
spans restricts the available procreation periods and this in
turn places those populations at a serious evolutionary
disadvantage.  The evolving populations have clearly found a
suitable trade-off value for their protection period, appropriate
for individuals that start dying of old age after 30 years.  It i s
reasonably straightforward to repeat the above evolutionary
simulations with the onset of “old age” at different ages,
corresponding to different natural “life-spans”, to determine
how that affects the emergent protection period and associated
performance level.  The results of this are plotted in Figure 10.
Beyond what might be termed the “natural learning time-scale”
of about 10 years, there is a fairly linear relation between the
protection period and life-span.  It is clear that learning is of
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sufficient importance that the amount of time devoted to i t
continues to increase as the life-spans become longer, rather
than using all that extra time for reproduction.  

In this study, the age of maturity has been tied to the
protection period, and the linear relation with life-span
appears consistent with biological populations, though in
reality there are certainly other factors besides learning
involved in determining the age at maturity (e.g., [6, 10, 17,
18]).  Figure 10 also shows how the average population
performance levels improve with life-span.  A further set of
simulations have shown that if the life-span is allowed to
evolve freely within the current set-up, it keeps on increasing
indefinitely.  In biological populations, of course, there are
many other factors that restrict life-spans (e.g., [12, 16]), but
simulating such trade-offs is beyond the scope of this study.
As is simulating factors that might result in reproduction
stopping a particular ages prior to death, or increased
reproductive problems at older ages.

In conclusion, the Artificial Life studies presented in this
paper have demonstrated how evolutionary neural network
simulations can begin to address learning aspects in life
history evolution.  As noted throughout, there remain many
related issues and refinements that could usefully be
incorporated into extensions of this study, such as the

changes to the learning experience that can result from the
parental protection (for example due to guided exploration,
exploration without risk, “teaching”, and so on), as well as
refined patterns of competition and deaths, more realistic costs
of reproduction and protection, protection abilities that
depend on parental fitness and number of children, and the
numerous biological and environmental details that affect the
life-span, age of maturity, fecundity and length of the
reproductive and growing periods.  Further work exploring
these factors and the associated trade-offs will hopefully be
presented elsewhere in the near future.
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