skip to main content
10.1145/1276958.1277127acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
Article

Multi-objective particle swarm optimization on computer grids

Published: 07 July 2007 Publication History

Abstract

In recent years, a number of authors have successfully extended particle swarmoptimization to problem domains with multiple objec\-tives. This paper addresses theissue of parallelizing multi-objec\-tive particle swarms. We propose and empirically comparetwo parallel versions which differ in the way they divide the swarminto subswarms that can be processed independently on differentprocessors. One of the variants works asynchronouslyand is thus particularly suitable for heterogeneous computer clusters asoccurring e.g.\ in moderngrid computing platforms.

References

[1]
D. Abramson, A. Lewis, and T. Peachy. Nimrod/o: A tool for automatic design optimization. In The 4th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP 2000), 2000.
[2]
E. Alba, F. Ameida, M. Blesa, C. Cotta, M. Diaz, I. Dorta, J. Gabarro, C. Leon, G. Luque, J. Petit, C. Rodriguez, A. Rojas, and F. Xhafa. Efficient parallel LAN/WAN algorithms for optimization. the MALLBA project. Parallel Computing, 32:415--440, 2006.
[3]
E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 6(5):443--461, 2002.
[4]
J. E. Alvarez-Benitez, R. M. Everson, and J. E. Fieldsend. A MOPSO algorithm based exclusively on pareto dominance concepts. In C. Coello--Coello et al., editors, Evolutionary Multi--Criterion Optimization, volume 3410, pages 459--73. Springer, 2005.
[5]
M. Bonn, F. Toussaint, and H. Schmeck. Joschka: Job-scheduling in heterogenen systemen. In Erik Maehle, editor, PARS Mitteilungen 2005, pages 99--106. 20. PARS Workshop, Gesellschaft fur Informatik, JUN 2005.
[6]
J. Branke, A. Kamper, and H. Schmeck. Distribution of evolutionary algorithms in heterogeneous networks. In Genetic and Evolutionary Computation Conference, volume 3102 of LNCS, pages 923--934. Springer, 2004.
[7]
J. Branke, T. KauBler, and H. Schmeck. Guidance in evolutionary multi-objective optimization. Advances in Engineering Software, 32:499--507, 2001.
[8]
J. Branke and S. Mostaghim. About selecting the personal best in multi-objective particle swarm optimization. In T. P. Runarsson et al., editors, Parallel Problem Solving from Nature, volume 4193 of LNCS, pages 523--532. Springer, 2006.
[9]
J. Branke, H. Schmeck, K. Deb, and M. Reddy. Parallelizing multi-objective evolutionary algorithms: cone separation. In Congress on Evolutionary Computation, pages 1952--1957, Portland, USA, 2004.
[10]
S. Cahon, N. Melab, and E.-G. Talbi. ParadisEO: A framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics, 10(3):357--380, 2004.
[11]
E. Cantu--Paz. Efficient and Accurate Parallel Genetic Algorithms. Kluwer, 2000.
[12]
J.-F. Chang, S.-C. Chu, F. F. Roddick, and J.-S. Pan. A parallel particle swarm optimization algorithm with communication strategies. Journal of Information Science and Engineering, 21(4):809--818, 2005.
[13]
C. A. Coello Coello and M. S. Lechuga. Mopso: A proposal for multiple objective particle swarm optimization. In Congress on Evolutionary Computation, pages 1051--1056. IEEE, 2002.
[14]
C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary Algorithms for Solving Multi--Objective Problems. Kluwer Academic Publishers, 2002.
[15]
K. Deb, P. Zope, and A. Jain. Distributed computing of pareto-optimal solutions with evolutionary algorithms. In Proceedings of Second International Conference on Evolutionary Multi--Criterion Optimization (EMO03), pages 534--549, 2003.
[16]
A. Hey, G. Fox, and F. Berman. Grid Computing: Making The Global Infrastructure a Reality. John Wiley and Sons, 2003.
[17]
S. Janson and D. Merkle. A new multi-objective particle swarm optimization algorithm using clustering applied to automated docking. In Hybrid Metaheuristics, pages 128--141, Springer--Verlag, 2005.
[18]
J. Kennedy and R.C. Eberhart. Particle swarm optimization. In IEEE International Conference on Neural Networks, pages 1942--1948, 1995.
[19]
J. Knowles and D. Corne. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation, 8(2):149--172, 2000.
[20]
F. Luna, A. J. Nebro, and E. Alba. Observations in using grid-enabled technologies for solving multi--objective optimization problems. Parallel Computing, 32:377--393, 2006.
[21]
S. Mostaghim and J. Teich. Strategies for finding good local guides in multi--objective particle swarm optimization. In IEEE Swarm Intelligence Symposium, pages 26--33, Indianapolis, USA, 2003.
[22]
S. Mostaghim and J. Teich. Covering pareto-optimal fronts by subswarms in multi--objective particle swarm optimization. In Congress on Evolutionary Computation, pages 1404--1411, Portland, USA, 2004.
[23]
K. E. Parsopoulos, D. K. Tasoulis, and M. N. Vrahatis. Multiobjective optimization using parallel vector evaluated particle swarm optimization. In M. H. Hamza, editor, IASTED International Converence on Artificial Intelligence and Applications, pages 823--828. IASTED/ACTA Presss, 2004.
[24]
K.E. Parsopoulos and M.N. Vrahatis. Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 1(2--3):235--306, 2002.
[25]
M. Reyes-Sierra and C. Coello Coello. Multi-objective particle swarm optimizers: A survey of the state--of--the--art. International Journal of Computational Intelligence Research, 2(3):287--308, 2006.
[26]
H. Schmeck, U. Kohlmorgen, and J. Branke. Parallel implementations of evolutionary algorithms. In A. Zomaya, F. Ercal, and S. Olariu, editors, Solutions to Parallel and Distributed Computing Problems, pages 47--66. Wiley, 2001.
[27]
F. Streichert, H. Ulmer, and A. Zell. Parallelization of multi-objective evolutionary algorithms using clustering algorithms. In Proceedings of Third International Conference on Evolutionary Multi--Criterion Optimization (EMO05), pages 92--107, 2005.
[28]
E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Shaker, 1999.

Cited By

View all
  • (2025)Application of Machine Learning to Increase the Efficiency of the Global Search Algorithm for Solving Multicriterial ProblemsNumerical Computations: Theory and Algorithms10.1007/978-3-031-81241-5_1(3-18)Online publication date: 1-Jan-2025
  • (2025)Comparative Efficiency of Machine Learning Models for Enhancing Algorithms in Solving Multiextremal Multicriteria ProblemsOptimization and Applications10.1007/978-3-031-79119-2_9(109-124)Online publication date: 31-Jan-2025
  • (2024)A line search technique for a class of multi-objective optimization problems using subgradientPositivity10.1007/s11117-024-01051-628:3Online publication date: 8-May-2024
  • Show More Cited By

Index Terms

  1. Multi-objective particle swarm optimization on computer grids

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GECCO '07: Proceedings of the 9th annual conference on Genetic and evolutionary computation
    July 2007
    2313 pages
    ISBN:9781595936974
    DOI:10.1145/1276958
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 07 July 2007

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. MOPSO
    2. grid computing
    3. multi-objective optimization
    4. parallel optimization
    5. particle swarm optimization

    Qualifiers

    • Article

    Conference

    GECCO07
    Sponsor:

    Acceptance Rates

    GECCO '07 Paper Acceptance Rate 266 of 577 submissions, 46%;
    Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 16 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Application of Machine Learning to Increase the Efficiency of the Global Search Algorithm for Solving Multicriterial ProblemsNumerical Computations: Theory and Algorithms10.1007/978-3-031-81241-5_1(3-18)Online publication date: 1-Jan-2025
    • (2025)Comparative Efficiency of Machine Learning Models for Enhancing Algorithms in Solving Multiextremal Multicriteria ProblemsOptimization and Applications10.1007/978-3-031-79119-2_9(109-124)Online publication date: 31-Jan-2025
    • (2024)A line search technique for a class of multi-objective optimization problems using subgradientPositivity10.1007/s11117-024-01051-628:3Online publication date: 8-May-2024
    • (2023)An Accelerated Algorithm for Finding Efficient Solutions in Multiobjective Problems with Black-Box Multiextremal CriteriaOptimization and Applications10.1007/978-3-031-22543-7_4(51-65)Online publication date: 3-Jan-2023
    • (2022)Survey on Multi-Objective Task Allocation Algorithms for IoT NetworksSensors10.3390/s2301014223:1(142)Online publication date: 23-Dec-2022
    • (2022)An improved proximal method with quasi-distance for nonconvex multiobjective optimization problemJournal of Applied Analysis10.1515/jaa-2021-207428:2(333-340)Online publication date: 6-Jan-2022
    • (2022)Uncrowded Hypervolume-Based Multiobjective Optimization with Gene-Pool Optimal MixingEvolutionary Computation10.1162/evco_a_0030330:3(329-353)Online publication date: 1-Sep-2022
    • (2022)A memetic procedure for global multi-objective optimizationMathematical Programming Computation10.1007/s12532-022-00231-315:2(227-267)Online publication date: 22-Nov-2022
    • (2021)Improved Lebesgue Indicator-Based Evolutionary Algorithm: Reducing Hypervolume ComputationsMathematics10.3390/math1001001910:1(19)Online publication date: 21-Dec-2021
    • (2020)An augmented Lagrangian algorithm for multi-objective optimizationComputational Optimization and Applications10.1007/s10589-020-00204-zOnline publication date: 20-Jun-2020
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media