skip to main content
10.1145/1276958.1277305acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
Article

Seeding methods for run transferable libraries

Published: 07 July 2007 Publication History

Abstract

Run Transferable Libraries (RTL) is an extension for GP where individualsin a population choose functions from an external library of ADF-likefunctions rather than from a set of standard GP functions. All previous work done with RTL provided a predefined function set. Thiswork investigates mechanisms by which the library can be seeded with domainrelevent functionality. .

References

[1]
M. Keijzer, C. Ryan, and M. Cattolico. Run transferable libraries - learning functional bias in problem domains. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference. Springer Verlag,13-17 July 2004.
[2]
H. Majeed, C. Ryan, and R. M. A. Azad. Evaluating GP schema in context. In H.-G. Beyer, U.-M. O'Reilly,D. V. Arnold, W. Banzhaf, C. Blum, E. W. Bonabeau, E. Cantu-Paz, D. Dasgupta, K. Deb, J. A. Foster, E. D. de Jong, H. Lipson, X. Llora, S. Mancoridis, M. Pelikan, G. R. Raidl, T. Soule, A. M. Tyrrell, J.-P. Watson, and E. Zitzler, editors, GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, volume 2, pages 1773--1774,washington DC, USA, 25-29 June 2005. ACM Press.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '07: Proceedings of the 9th annual conference on Genetic and evolutionary computation
July 2007
2313 pages
ISBN:9781595936974
DOI:10.1145/1276958

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 July 2007

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. module acquisition
  2. schema theory

Qualifiers

  • Article

Conference

GECCO07
Sponsor:

Acceptance Rates

GECCO '07 Paper Acceptance Rate 266 of 577 submissions, 46%;
Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)1
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Explainable Artificial Intelligence by Genetic Programming: A SurveyIEEE Transactions on Evolutionary Computation10.1109/TEVC.2022.322550927:3(621-641)Online publication date: Jun-2023
  • (2023)Jaws 30Genetic Programming and Evolvable Machines10.1007/s10710-023-09467-x24:2Online publication date: 22-Nov-2023
  • (2020)Improving Module Identification and Use in Grammatical Evolution2020 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC48606.2020.9185571(1-7)Online publication date: Jul-2020
  • (2019)Transfer learning in constructive induction with Genetic ProgrammingGenetic Programming and Evolvable Machines10.1007/s10710-019-09368-yOnline publication date: 5-Nov-2019

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media