skip to main content
10.1145/1277500.1277532acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Lower bounds for approximate factorizations via semidefinite programming: (extended abstract)

Published:25 July 2007Publication History

ABSTRACT

The problem of approximately factoring a real or complex multivariate polynomial f seeks minimal perturbations ? f to the coefficients of the input polynomial f so that the deformed polynomial ff has the desired factorization properties. Effcient algorithms exist that compute the nearest real or complex polynomial that has non-trivial factors (see [3,6 ]and the literature cited there). Here we consider the solution of the arising optimization problems polynomial optimization (POP)via semide finite programming (SDP). We restrict to real coe cients in the input and output polynomials.

References

  1. Borchers, B. CSDP,a C library for semide finite programming. Optimization Methods and Software 11 & 12 (1999), 613--623. Available at http://infohost.nmt.edu/~borchers/csdp.htmlGoogle ScholarGoogle Scholar
  2. Gao, S. Factoring multivariate polynomials via partial differential equations. Math. Comput. 72 242 (2003),801--822. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Gao, S., Kaltofen, E., May, J. P., Yang, Z., and Zhi, L. Approximate factorization of multivariate polynomials via differential equations. In ISSAC 2004 Proc. 2004 Internat. Symp. Symbolic Algebraic Comput. (New York,N.Y.,2004), J. Gutierrez, Ed., ACM Press,pp.167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Hitz, M. A., Kaltofen, E., and Lakshman Y. N. E .cient algorithms for computing the nearest polynomial with a real root and related problems. In Proc. 1999 Internat. Symp. Symbolic Algebraic Comput. (ISSAC'99) (New York,N.Y., 1999), S. Dooley, Ed., ACM Press, pp.205--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Kaltofen, E., and May, J. On approximate irreducibility of polynomials in several variables. In ISSAC 2003 Proc. 2003 Internat. Symp. Symbolic Algebraic Comput. (New York,N.Y.,2003), J. R. Sendra, Ed., ACM Press, pp.161--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Kaltofen, E., May, J., Yang, Z., and Zhi, L. Approximate factorization of multivariate polynomials using singular value decomposition. Manuscript, 22 pages. Submitted, Jan.2006.Google ScholarGoogle Scholar
  7. Kaltofen, E., Yang, Z., and Zhi, L. Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials. In ISSAC MMVI Proc. 2006 Internat. Symp. Symbolic Algebraic Comput. (New York, N.Y., 2006), J.-G.Dumas, Ed., ACM Press, pp.169--176. Full version, 21 pages. Submitted, December 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Lasserre, J. B. optimization with polynomials and the problem of moments. SIAM Journal on Optimization 11 (2001),796--817. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Nie, J., Demmel, J., and Gu, M. Global minimization of rational functions and the nearest GCDs. http://arxiv.org/pdf/math/0601110 2006.Google ScholarGoogle Scholar
  10. Prajna, S., Papachristodoulou, A., Seiler, P., and Parrilo, P. A. SOSTOOLS: Sum of squares optimization toolbox for MATLAB. Available from http://www.cds.caltech.edu/sostools and http://www.mit.edu/~parrilo/sostools 2004.Google ScholarGoogle Scholar
  11. Ruppert, W. M. Reduzibilität ebener Kurven.J. reine angew. Math. 369 (1986),167--191.Google ScholarGoogle Scholar
  12. Ruppert, W. M. Reducibility of polynomials f(x,y) modulo p J. Number Theory 77 (1999),62--70.Google ScholarGoogle ScholarCross RefCross Ref
  13. Waki, H., Kim, S., Kojima, M., and Muramatsu, M. SparsePOP: A sparse semide nite programming relaxation of polynomial optimization problems. Research Report B-414, Tokyo Institute of Technology, Dept. of Mathematical and Computing Sciences, Oh-Okayama, Meguro 152--8552, Tokyo, Japan, 2005. Available at http://www.is.titech.ac.jp/~kojima/SparsePOPGoogle ScholarGoogle Scholar
  14. Yamashita, M., Fujisawa, K., and Kojima, M. SDPARA: SemiDefinite Programming Algorithm PARAllel version. Parallel Computing 29 (2003),1053--1067. Available at http: min-//grid.r.dendai.ac.jp/sdpa/sdpa.6.00/sdpara.index.html Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Lower bounds for approximate factorizations via semidefinite programming: (extended abstract)

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SNC '07: Proceedings of the 2007 international workshop on Symbolic-numeric computation
        July 2007
        218 pages
        ISBN:9781595937445
        DOI:10.1145/1277500

        Copyright © 2007 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 July 2007

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader