skip to main content
10.1145/1277548.1277577acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

On exact and approximate interpolation of sparse rational functions

Published:29 July 2007Publication History

ABSTRACT

The black box algorithm for separating the numerator from the denominator of a multivariate rational function can be combined with sparse multivariate polynomial interpolation algorithms to interpolate a sparse rational function. domization and early termination strategies are exploited to minimize the number of black box evaluations. In addition, rational number coefficients are recovered from modular images by rational vector recovery. The need for separate numerator and denominator size bounds is avoided via correction, and the modulus is minimized by use of lattice basis reduction, a process that can be applied to sparse rational function vector recovery itself. Finally, one can deploy sparse rational function interpolation algorithm in the hybrid symbolic-numeric setting when the black box for the function returns real and complex values with noise. We present and analyze five new algorithms for the above problems and demonstrate their effectiveness on a mark implementation.

References

  1. Becuwe, S., Cuyt, A., and Verdonk, B. Multivariate rational interpolation of scattered data. In Large-Scale Scientific Computing (Heidelberg, Germany, 2004), I. Lirkov, S. Margenov, J. Wasniewski, and Y. Plamen, Eds., vol. 2907 of Lect. Notes Comput. Sci., Springer Verlag, pp. 204--213.Google ScholarGoogle Scholar
  2. Ben-Or, M., and Tiwari, P. A deterministic algorithm for sparse multivariate polynomial interpolation. In Proc. Twentieth Annual ACM Symp. Theory Comput.(New York, N.Y., 1988), ACM Press, pp. 301--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. DeMillo, R.A., and Lipton, R.J. probabilistic remark on algebraic program testing. Information Process. Letters 7,4 (1978), 193--195.Google ScholarGoogle ScholarCross RefCross Ref
  4. Dílaz, A., and Kaltofen, E. FoxBox system for manipulating symbolic objects in black box representation. In Proc. 1998 Internat. Symp. Symbolic Algebraic Comput. (ISSAC'98) (New York, N.Y., 1998), O. Gloor, Ed., ACM Press, pp.30--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dumas, J.-G. Ed. ISSAC MMVI Proc. 2006 Internat. Symp. Symbolic Algebraic Comput. (New York, N.Y., 2006), ACM Press.Google ScholarGoogle Scholar
  6. von zur Gathen, J., and Gerhard, J. Modern Computer Algebra. Cambridge University Press, Cambridge, New York, Melbourne, 1999. Second edition 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Giesbrecht, M., Labahn, G., and Lee, W. Symbolic-numeric sparse interpolation of multivariate polynomials. In Dumas {5}, pp.116--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Grigoriev, D. Y., Karpinski, M., and Singer, M. F. Computational complexity of sparse rational function interpolation. SIAM J. Comput. 23 (1994), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Kai, H. Rational function approximation and its ill-conditioned property. In Wang and Zhi {26}, pp.47--53. Preliminary version in {25}, pp. 62--64.Google ScholarGoogle Scholar
  10. Kaltofen, E. Greatest common divisors of polynomials given by straight-line programs. J. ACM 35,1 (1988), 231--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kaltofen, E. Asymptotically fast solution of Toeplitz-like singular linear systems. In Proc. 1994 Internat. Symp. Symbolic Algebraic Comput.(ISSAC'94) (New York, N.Y., 1994), ACM Press, pp. 297--304. Journal version in {12}. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kaltofen, E. Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems. Math. Comput. 64,210 (1995), 777--806. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kaltofen, E., and Lee, W. Early termination in sparse interpolation algorithms. J. Symbolic Comput. 36,3-4 (2003), 365--400. Special issue Internat. Symp. Symbolic Algebraic Comput.(ISSAC 2002). Guest editors: M. Giusti & L.M. Pardo. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kaltofen, E., Lee, W.-s., and Lobo, A. A. Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel's algorithm. In Proc. 2000 Internat. Symp. Symbolic Algebraic Comput.(ISSAC'00)(New York, N.Y., 2000), C. Traverso, Ed., ACM Press, pp. 192--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kaltofen, E., and Rolletschek, H. Computing greatest common divisors and factorizations in quadratic number fields. Math. Comput. 53,188 (1989), 697--720.Google ScholarGoogle Scholar
  16. Kaltofen, E., and Trager, B. Computing with polynomials given by black boxes for their evaluations: Greatest common divisors, factorization, separation of numerators and denominators. J. Symbolic Comput. 9,3 (1990), 301--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kaltofen, E., Yang, Z., and Zhi, L. Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials. In Dumas {5}, pp.169--176. Full version, 21 pages. Submitted, December 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kaltofen, E., Yang, Z., and Zhi, L. On probabilistic analysis of randomization in hybrid symbolic-numeric algorithms, 2007. Manuscript in preparation.Google ScholarGoogle Scholar
  19. Kaltofen, E., Yang, Z., and Zhi, L. Structured low rank approximation of a Sylvester matrix. In Wang and Zhi {26}, pp.69--83. Preliminary version in {25 }, pp. 188--201.Google ScholarGoogle Scholar
  20. Lagarias, J. C. The computational complexity of simultaneous diophantine approximation problems. SIAM J. Comp. 14 (1985), 196--209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Monagan, M. Maximal quotient rational reconstruction: An almost optimal algorithm for rational reconstruction. In ISSAC 2004 Proc. 2004 Internat. Symp. Symbolic Algebraic Comput.(New York, N.Y., 2004), J. Gutierrez, Ed., ACM Press, pp.243--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Olesh, Z., and Storjohann, A. The vector rational function reconstruction problem, Sept. 2006. Manuscript, 14 pages.Google ScholarGoogle Scholar
  23. Park, H., Zhang, L., and Rosen, J. B. Low rank approximation of a Hankel matrix by structured total least norm. BIT 39,4 (1999), 757--779.Google ScholarGoogle ScholarCross RefCross Ref
  24. Schwartz, J. T. Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27 (1980), 701--717. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Wang, D., and Zhi, L. Eds. Internat. Workshop on Symbolic-Numeric Comput. SNC 2005 Proc.(2005). Distributed at the Workshop in Xi'an, China, July 19-21.Google ScholarGoogle Scholar
  26. Wang, D., and Zhi, L. Eds. Symbolic-Numeric Computation. Trends in Mathematics. Birkhäuser Verlag, Basel, Switzerland, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wang, P. S., Guy, M. J. T., and Davenport, J. H. P-adic reconstruction of rational numbers. SIGSAM Bulletin 16,2 (May 1982), 2--3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Zippel, R. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic Computation (Heidelberg, Germany, 1979), vol. 72 of Lect. Notes Comput. Sci., Springer Verlag, pp.216--226. Proc. EUROSAM '79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Zippel, R. Interpolating polynomials from their values. J. Symbolic Computation 9,3 (1990), 375--403. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. On exact and approximate interpolation of sparse rational functions

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ISSAC '07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation
      July 2007
      406 pages
      ISBN:9781595937438
      DOI:10.1145/1277548
      • General Chair:
      • Dongming Wang

      Copyright © 2007 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 July 2007

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate395of838submissions,47%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader