skip to main content
10.1145/1277741.1277747acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
Article

Using query contexts in information retrieval

Published: 23 July 2007 Publication History

Abstract

User query is an element that specifies an information need, but it is not the only one. Studies in literature have found many contextual factors that strongly influence the interpretation of a query. Recent studies have tried to consider the user's interests by creating a user profile. However, a single profile for a user may not be sufficient for a variety of queries of the user. In this study, we propose to use query-specific contexts instead of user-centric ones, including context around query and context within query. The former specifies the environment of a query such as the domain of interest, while the latter refers to context words within the query, which is particularly useful for the selection of relevant term relations. In this paper, both types of context are integrated in an IR model based on language modeling. Our experiments on several TREC collections show that each of the context factors brings significant improvements in retrieval effectiveness.

References

[1]
Bai, J., Nie, J. Y., Cao, G., Context-dependent term relations for information retrieval, EMNLP'06, pp. 551--559, 2006.
[2]
Belkin, N. J., Interaction with texts: Information retrieval as information seeking behavior, Information Retrieval'93: Von der modellierung zuallanwendung, pp. 55--66, Konstanz: Krause & Womser-Hacker, 1993.
[3]
Berger, A., Lafferty, J., Information retrieval as statistical translation, SIGIR'99, pp. 222--229, 1999.
[4]
Bouchard, H., Nie, J. Y., Modèles de langue appliqués à la recherche d'information contextuelle, Conf. en Recherche d'Information et Applications (CORIA), Lyon, 2006.
[5]
Chirita, P. A., Paiu, R., Nejdl, W., Kohlschütter, C., Using ODP metadata to personalize search, SIGIR, pp. 178--185, 2005.
[6]
Church, K. W., Hanks, P., Word association norms, mutual information, and lexicography. ACL, pp. 22--29, 1989.
[7]
Croft, W. B., Cronen-Townsend, S., Lavrenko, V., Relevance feedback and personalization: A language modeling perspective, In: The DELOS-NSF Workshop on Personalization and Recommender Systems Digital Libraries, pp. 49--54, 2006.
[8]
Croft, W. B., Wei, X., Context-based topic models for query modification, CIIR Technical Report, University of Massachusetts, 2005.
[9]
Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., Robbins, D. C., Stuff I've seen: a system for personal information retrieval and re-use, SIGIR'03, pp. 72--79, 2003.
[10]
Fang, H., Zhai, C., Semantic term matching in axiomatic approaches to information retrieval, SIGIR'06, pp. 115--122, 2006.
[11]
Gao, J., Qi, H., Xia, X., Nie, J.-Y., Linear discriminative model for information retrieval. SIGIR'05, pp. 290--297, 2005.
[12]
Goole Personalized Search, http://www.google.com/psearch.
[13]
Hipp, J., Guntzer, U., Nakhaeizadeh, G., Algorithms for association rule mining - a general survey and comparison. SIGKDD explorations, 2 (1), pp. 58--64, 2000.
[14]
Ingwersen, P., Jäverlin, K., Information retrieval in context: IRiX, SIGIR Forum, 39: pp. 31--39, 2004.
[15]
Kim, H.-R., Chan, P. K., Personalized ranking of search results with learned user interest hierarchies from bookmarks, WEBKDD'05 Workshop at ACM-KDD, pp. 32--43, 2005.
[16]
Lavrenko, V., Croft, W. B., Relevance-based language models, SIGIR'01, pp. 120--127, 2001.
[17]
Lau, R., Bruza, P., Song, D., Belief revision for adaptive information retrieval, SIGIR'04, pp. 130--137, 2004.
[18]
Liu, F., Yu, C., Meng, W., Personalized web search by mapping user queries to categories, CIKM'02, pp. 558--565.
[19]
Liu, X., Croft, W. B., Cluster-based retrieval using language models, SIGIR '04, pp. 186--193, 2004.
[20]
Morris, R. C., Toward a user-centered information service, JASIS, 45: pp. 20--30, 1994.
[21]
Park, T. K., Toward a theory of user-based relevance: A call for a new paradigm of inquiry, JASIS, 45: pp. 135--141, 1994.
[22]
Peng, F., Schuurmans, D., Wang, S. Augmenting Naive Bayes Classifiers with Statistical Language Models. Inf. Retr. 7(3-4): pp. 317--345, 2004.
[23]
Pitkow, J., Schütze, H., Cass, T., Cooley, R., Turnbull, D., Edmonds, A., Adar, E., Breuel, T., Personalized Search, Communications of ACM, 45: pp. 50--55, 2002.
[24]
Qiu, Y., Frei, H. P. Concept based query expansion. SIGIR'93, pp. 160--169, 1993.
[25]
Sanderson, M., Retrieving with good sense, Inf. Ret., 2(1): pp. 49--69, 2000.
[26]
Schamber, L., Eisenberg, M. B., Nilan, M. S., A re-examination of relevance: Towards a dynamic, situational definition, Information Processing and Management, 26(6): pp. 755--774, 1990.
[27]
Schütze, H., Pedersen J. O., A cooccurrence-based thesaurus and two applications to information retrieval, Information Processing and Management, 33(3): pp. 307--318, 1997.
[28]
Shen, D., Pan, R., Sun, J -T., Pan, J. J., Wu, K., Yin, J., Yang, Q. Query enrichment for web-query classification. ACM-TOIS, 24(3): pp. 320--352, 2006.
[29]
Shen, X., Tan, B., Zhai, C., Context-sensitive information retrieval using implicit feedback, SIGIR'05, pp. 43--50, 2005.
[30]
Teevan, J., Dumais, S. T., Horvitz, E., Personalizing search via automated analysis of interests and activities, SIGIR'05, pp. 449--456, 2005.
[31]
Voorhees, E., Query expansion using lexical-semantic relations. SIGIR'94, pp. 61--69, 1994.
[32]
Xu, J., Croft, W. B., Query expansion using local and global document analysis, SIGIR'96, pp. 4--11, 1996.
[33]
Yarowsky, D. Unsupervised word sense disambiguation rivaling supervised methods. ACL, pp. 189--196. 1995.
[34]
Zhou X., Hu X., Zhang X., Lin X., Song I -Y., Context-sensitive semantic smoothing for the language modeling approach to genomic IR, SIGIR'06, pp. 170--177, 2006.
[35]
Zhai, C., Lafferty, J., Model-based feedback in the language modeling approach to information retrieval, CIKM'01, pp. 403--410, 2001.
[36]
Zhai, C., Lafferty, J., A study of smoothing methods for language models applied to ad hoc information retrieval. SIGIR, pp.334--342, 2001.

Cited By

View all
  • (2024)Enhancing Retrieval Processes for Language Generation with Augmented Queries to Provide Factual Information on SchizophreniaProcedia Computer Science10.1016/j.procs.2024.09.424246(443-452)Online publication date: 2024
  • (2023)Information Retrieval: Recent Advances and BeyondIEEE Access10.1109/ACCESS.2023.329577611(76581-76604)Online publication date: 2023
  • (2022)Semantic Models for the First-Stage Retrieval: A Comprehensive ReviewACM Transactions on Information Systems10.1145/348625040:4(1-42)Online publication date: 24-Mar-2022
  • Show More Cited By

Index Terms

  1. Using query contexts in information retrieval

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGIR '07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval
    July 2007
    946 pages
    ISBN:9781595935977
    DOI:10.1145/1277741
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 23 July 2007

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. domain model
    2. language model
    3. query contexts
    4. term relation

    Qualifiers

    • Article

    Conference

    SIGIR07
    Sponsor:
    SIGIR07: The 30th Annual International SIGIR Conference
    July 23 - 27, 2007
    Amsterdam, The Netherlands

    Acceptance Rates

    Overall Acceptance Rate 792 of 3,983 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)28
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 28 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Enhancing Retrieval Processes for Language Generation with Augmented Queries to Provide Factual Information on SchizophreniaProcedia Computer Science10.1016/j.procs.2024.09.424246(443-452)Online publication date: 2024
    • (2023)Information Retrieval: Recent Advances and BeyondIEEE Access10.1109/ACCESS.2023.329577611(76581-76604)Online publication date: 2023
    • (2022)Semantic Models for the First-Stage Retrieval: A Comprehensive ReviewACM Transactions on Information Systems10.1145/348625040:4(1-42)Online publication date: 24-Mar-2022
    • (2020)A hybrid semantic query expansion approach for Arabic information retrievalJournal of Big Data10.1186/s40537-020-00310-z7:1Online publication date: 29-Jun-2020
    • (2020)A survey on context awareness in big data analytics for business applicationsKnowledge and Information Systems10.1007/s10115-020-01462-3Online publication date: 21-Apr-2020
    • (2020)Personalization in text information retrievalJournal of the Association for Information Science and Technology10.1002/asi.2423471:3(349-369)Online publication date: 28-Jan-2020
    • (2018)A Survey on Context-Aware InformationRetrieval ResearchComputational Science and Technology10.1007/978-981-10-8276-4_38(399-409)Online publication date: 24-Feb-2018
    • (2017)Context-aware query expansion method using Language Models and Latent Semantic AnalysesKnowledge and Information Systems10.1007/s10115-016-0952-x50:3(751-762)Online publication date: 1-Mar-2017
    • (2016)Embedding-based Query Language ModelsProceedings of the 2016 ACM International Conference on the Theory of Information Retrieval10.1145/2970398.2970405(147-156)Online publication date: 12-Sep-2016
    • (2016)Estimating Embedding Vectors for QueriesProceedings of the 2016 ACM International Conference on the Theory of Information Retrieval10.1145/2970398.2970403(123-132)Online publication date: 12-Sep-2016
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media