Lesson Learnt from a Large-Scale Industrial Semantic Web
Application

Sylvia C Wong, Richard M Crowder, Gary B Wills, and Nigel R Shadbolt
School of Electronics and Computer Science
University of Southampton, UK
sw2@ecs.soton.ac.uk, rmc@ecs.soton.ac.uk, gbw@ecs.soton.ac.uk,

nrs@ecs.soton.ac.uk

ABSTRACT

The design and maintenance of an aero-engine generates a
significant amount of documentation. When designing new
engines, engineers must obtain knowledge gained from main-
tenance of existing engines to identify possible areas of con-
cern. We developed a Semantic Web based document repos-
itory for transferring front-line maintenance knowledge to
design. The Semantic Web is an ideal candidate for this
application because of the size and distributed nature of an
aerospace manufacturer’s operation. The Semantic Web al-
lows us to dynamically cross reference documents with the
use of an ontology. However, during the design and imple-
mentation of this project, we found deficiencies in the W3C!
recommended Semantic Web query language SPARQL. It
is difficult to answer questions our users sought from the
document repository using SPARQL. The problem is that
SPARQL is designed for handling textual queries. In in-
dustrial applications, many common textual and semantic
questions also contain a numerical element, be it data sum-
marization or arithmetic operations. In this paper, we gen-
eralize the problems we found with SPARQL, and extend it
to cover web applications in non-aerospace domains. Based
on this analysis, we recommend that SQL-styled grouping,
aggregation and variable operations be added to SPARQL,
as they are necessary for industrial applications of the Se-
mantic Web. At the moment, to answer the non-textual
questions we identified with an RDF store, custom writ-
ten software is needed to process the results returned by
SPARQL. We incorporated the suggested numerical func-
tionalities from SQL for an example query, and achieved a
21.7% improvement to the speed of execution. More impor-
tantly, we eliminate the need of extra processing in software,
and thus make it easier and quicker to develop Semantic Web
applications.

"World Wide Web Consortium

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HT’07, September 10-12, 2007, Manchester, United Kingdom.

Copyright 2007 ACM 978-1-59593-820-6/07/0009 ...$5.00.

Categories and Subject Descriptors

H.2.3 [Database Management]: Languages—Query lan-
guages; H.3.5 [Information Storage and Retrieval]: On-

line Information Services— Web-based services; J.2 [Computer

Applications]: Physical Sciences and Engineering— FEngi-
neering

General Terms

Languages

Keywords
Semantic Web, Industrial Hypermedia, SPARQL, SQL, RDF

1. INTRODUCTION

The design and maintenance of large and complex engi-
neering systems requires a significant amount of documenta-
tion, particularly if the system being considered is a turbofan
engine used on the current generation of aircraft. These en-
gines are amongst the most complex machine ever designed,
incorporating a wide range technologies including high tem-
perature materials, complex fluid dynamics and high speed
rotating components.

A fundamental shift is currently occurring in the aerospace
industry away from selling products to providing services.
Companies such as Rolls-Royce aim to make an increasing
number of its engine fleet subject to long-term maintenance
service agreements [10]. Essential to the success of this mar-
ket shift is to design new products with lower and more
predictable maintenance costs. To minimize maintenance
costs throughout the engine’s life cycle, engineers must ob-
tain knowledge gained from maintenance histories of similar
products during the design phase of new products. This will
help engineers identify parts most likely to be problematic
throughout the engine’s entire life cycle. It should be noted
that engine design is typically undertaken by a number of
teams who are responsible for individual engine modules,
e.g compressor or turbine. Therefore it is impossible for
any single member of a design team to access more than a
fraction of the available documentation. As is widely recog-
nized, information systems usually develop over time into a
set of heterogeneous resources with ill-defined metadata. As
a result, it becomes difficult for engineers to follow a trail
through the resources [23]. The challenge for organizations
is therefore to develop an information system that is both
comprehensive and will satisfy the increasing demands from
industry for up-to-date and easily accessible information.

In response to these challenges, we are developing a Se-
mantic Web based document repository to support engineers
to design for the aftermarket [24]. Semantic Web technolo-
gies are used for this project because of their ability to easily
integrate distributed resources. In the aerospace industry,
maintenance documents are created by service teams located
all over the world, at airports and overhaul facilities. Design
documents are created by multiple design teams, which can
also be based at multiple sites. During the design and imple-
mentation of this document repository, it became apparent
that deficiencies in the W3C recommended query language
SPARQL [19] makes extracting required data from RDF [16]
stores unnecessarily difficult. Specifically, SPARQL lacks
support for aggregation, grouping and SELECTed variable
operations. These functionalities are essential to industrial
knowledge applications, where the information sought is not
entirely textual in nature, but often contains a numerical
element.

The contribution of this paper is threefold:

e To argue that in industrial applications, not all knowl-
edge sought are entirely and completely textual. Even
if the data stored is textual and the questions asked
relate to semantic information stored within the data,
some degree of numerical and data summarization is
often required.

e To demonstrate that SPARQL cannot answer ques-
tions that require data summarization and simple arith-
metic operations.

e To demonstrate that SQL-styled aggregation, group-
ing and variable operations are easy to implement in
SPARQL, and that the addition of these features open
SPARQL, and thus RDF stores, to industrial knowl-
edge applications.

The paper is organized as follows. Section 2 gives an
overview of industrial hypermedia applications, and its rel-
evance to the Semantic Web. Section 3 then reviews other
literature that compares Semantic Web technologies with
traditional relational databases. Section 4 explains the mo-
tivation behind our document repository project, and the
objectives we are trying to achieve. Section 5 describes the
documents available and the ontology developed for our ap-
plication. This is followed by Section 6, which describes
the type of knowledge design engineers specifically sought
from our document repository. Section 7 then explains in
detail why SPARQL is ill-equipped to handle the questions
asked by the engineers in our application. A comparative
implementation in SQL is presented in Section 8. Section 9
generalizes the problem with SPARQL to other industrial
knowledge application domains. This section outlines the
categories of questions that SPARQL is ill-equipped to an-
swer. Then in Section 10, we explain why these shortcom-
ings can be easily solved with technologies today’s Semantic
Web infrastructure are built upon. The paper finishes with
conclusions in Section 11.

2. INDUSTRIAL HYPERMEDIA AND THE
SEMANTIC WEB

The concept of using open hypermedia for information
and document management within manufacturing organi-
zations was first proposed by Malcolm et. al. [15]. They

argued that hypermedia systems had to evolve beyond the
standalone application and allow the integration of resources
across an enterprise. Since then, a number of hypermedia
applications including engineering applications [2], medical
record keeping [12], historical archives [5] and education [4].

The aim of the Semantic Web is to augment the existing
Web into a web of data [20]. This contrasts to the origi-
nal Web where information is provided and delivered to be
read by humans, and not for automated processing by soft-
ware agents. RDF (Resource Description Framework) is the
standard for information representation and knowledge ex-
change in the Semantic Web. RDF is designed to allow easy
integration over distributed sources of information. It allows
anyone to make statements about any resource.

While the Semantic Web aims primarily at providing a
generic infrastructure for machine-processable content on
the Web, it has direct relevance to hypermedia [22, 1]. In
particular, the Semantic Web provides an open-standard in-
frastructure that are compliant to the definition of open hy-
permedia systems defined in [3] and [6]:

e A system that does not impose any mark-up upon the
information. The absence of mark-up ensures that
other processes that are not part of the information
delivery system can access the information.

e the links are separated from the information objects.

e A system that can integrate with any tool or process
that runs under the host operating system.

e A system in which information and processes maybe
distributed across a network and across hardware plat-
form.

3. QUERYING THE SEMANTIC WEB

There are several query languages for RDF in existence
[8], for example, RDQL, RQL and SPARQL. SPARQL has
emerged as the de-facto RDF query language, and currently
has W3C Recommendation status. RDF query languages of-
fer developers a simple way to combine the results of queries
over disparate resources. Documents on corporate intranet
and web sites are mostly stored inside relational databases
and presented to users via server side scripts. Therefore
the use of RDF for data exchange can be seen as a way to
unleash the isolated data stored inside these distributed re-
lational databases, and integrating these databases into a
unified resource for sharing.

Siberski et. al. had also recommended an extension to
the SPARQL language [21]. The current SPARQL speci-
fication offers only limited facilities for scoring and result
ordering. Specifically, it is not possible to search with a list
of scored preferences. For example, a user wants to search
for a list of dentists, preferring ones close to home, and with
appointments outside rush hours. However, if preferences
are combined with a logical AND, the search is likely to re-
turn an empty result table if the list of preferences is long.
The work of Siberski et. al. allows scoring of preferences in
a search. In the dentist example, the user would be able to
say that finding a dentist with appointments outside rush
hours is more important than finding ones close to home.

Drawing parallels between relational databases and RDF
stores, or SQL and SPARQL is nothing new. For exam-
ple, Noy and Klein discussed the similarities and differences

between database schema and ontology evolutions [18]. By
comparing and contrasting database schemas and ontolo-
gies, Noy and Klein built on and transferred knowledge from
existing research in schema evolution and applied them to
ontologies. Similarly, the purpose of this paper is not to
dismiss SPARQL. It is to draw useful features from SQL
and show how they can be used to improve SPARQL for
industrial applications of the Semantic Web.
MacRae-Spencer and Shadbolt compared the query lan-
guages SQL and SPARQL for a large-scale digital library
indexing application [17]. The aim of the reported compar-
ison was to investigate whether RDF/SPARQL was better
(or at least equal) in performance with a repository built
upon relational database and SQL. They found that up-
dates and inserts took longer in relational databases because
of the need to recalculate the indexes that were needed for
efficient table JOIN operations. On the other hand, JOINs
were not needed in RDF stores because the data model is de-
signed specifically for questions of relationships and integra-
tion of disparate sources of information. MacRae-Spencer
and Shadbolt noted that one of their sample queries “how
many distinct authors are there in this system”was more effi-
cient in SQL than SPARQL. This was because the SPARQL
statement had to query the entire RDF store to find all in-
stances that matched the search pattern and then formed
a distinct list of the matches. Summation was then calcu-
lated with an external program. However, they did not pro-
vide any suggestions for overcoming this deficiency. In this
paper, we provide a broader analysis of the shortcomings
of SPARQL with regard to a large-scale industrial applica-
tion. We generalize the type of user questions that are hard
to answer in SPARQL. We then make suggestions on how
SPARQL can be modified to support these user questions.

4. MOTIVATION

As is well recognized in engineering design, the use of past
experiences and previously acquired knowledge, either from
the designer’s own experiences or from resources within their
organization forms an important part of the design process.
It has been estimated that 90% of industrial design activity
is based on variant design [7], while during a redesign ac-
tivity up to 70% of the information is taken from previous
solutions [14]. A cursory consideration of these figures iden-
tifies two immediate challenges — how to capture knowledge,
and how to retrieve it. The purpose of our document reposi-
tory is thus to enable the transfer and retrieval of knowledge
across the organization to support design activities.

Figure 1 shows the key information flow for the differ-
ent stages in the life of an engine. Concept design is the
first stage of an engine’s life cycle. Given a set of broad
requirements, such as thrust, range of the target aircraft
and fuel burn, engineers determine the approximate dimen-
sions, weight, power and other physical characteristics for
the engine design. The engineers also make estimates of
the manufacturing costs of the engine. In the design stage,
engineers transform the preliminary abstract design into a
set of concrete plans that can be used in production. In
production, engines are built according to the design plans.
Traditionally, after production and sales, responsibility for
the engine passes from the manufacturer, to the airlines, who
own the engines. The airlines are responsible for maintain-
ing the engines. This maintenance activity is supported by
the manufacturer’s technical support and operations team.

To assist maintenance engineers to identify problems before
a breakdown occurs, engines are commonly equipped with
sensors for engine monitoring. This monitoring information
can be analysed for abnormal operating conditions, such as
temperature or pressure. However until fairly recently, the
monitoring data was only used to support maintenance ac-
tivities, even though it is a rich source of information for the
designers of future engines.

Operation
A : Y
! : A
>
Engine Design ” Production -

4
4

concept <

Engine
Monitoring

Figure 1: Information flow between the different
stages in the life of an aero-engine. The vertical
line between production and operation represents
the transfer of the engine from its manufacturer to
an airline. Operations is the generic term for main-
tenance and aftersale support.

As can be seen in Figure 1, there are interactions and in-
formation flow between neighbouring stages in the produc-
tion maintenance process. This is due to the iterative nature
of engineering processes. Design knowledge is also passed to
operations in the form of ‘owner’s manuals’. Sometimes,
information also passes between unconnected stages, for ex-
ample, between operations and engine concept. However,
the flow is weak and may take the form of informal and
personal networking between engineers.

While the process works very well, it does have significant
disadvantages. In particular, design engineers are remote
from the problems experienced in the field by operations.
Due to the importance of increasing operational reliabil-
ity and minimizing maintenance costs in the new market
paradigm of product support, information gained in the op-
eration of a fleet of engines needs to be fed back to the
designers of subsequent engines. However, the current in-
formation infrastructure makes this difficult as concept de-
sign engineers do not have access to maintenance knowledge.
Similarly, design engineers should consult existing mainte-
nance documents to help design parts with more predictable
maintenance costs.

As a result, we need to strengthen and help formalize the
information flow between the company’s aftermarket opera-
tions and the design teams. Figure 2 shows the information
and knowledge flows our research aims to build. This would
allow the knowledge gained during the design, production
and operation of an engine to advise the design of the next
variant.

The following scenario? illustrates the potential use and
benefit from such a document repository. The scenario in-
volves three separate and different groups of users that are

2The scenario is entirely fictitious and does not derive from
any real event.

Variant n

Operation

A

Engine
Monitoring

4

Engine .
| concept Design [:I Production

I !

Engine
concept

1 f f

Variant n+1

Design Production

Figure 2: We aim to facilitate the flow of information
gained during the life-cycle of one engine variant to
inform the design of the next variant. The dotted
arrows indicate the flow of design rationale and sim-
ilar knowledge. The solid arrows represent all other
information flows including real time engine infor-
mation and design documentation.

involved in the life of a jet engine. Front-line maintenance
engineers are involved in the day to day servicing of the
engines, and thus responsible for populating the document
repository with maintenance reports and other similar doc-
uments.

During the reqular pre-flight checks, a flight
crew reported a problem with a leak from an en-
gine’s bleed air system. Subsequent inspection
which required the removal of the engine revealed
that a duct had failed at a joint due to vibration.
After repair, the engine was returned to service,
and a full maintenance event report submitted to
the document repository.

The document repository can then be used by technical
support and operation engineers, who are responsible for
improving the performance of existing engines. They can
use information collected in the repository to monitor trends
that develop over a fleet of engines. Modification can then
be designed to mitigate any problems found:

Following a review of the maintenance events
relating to a specific engine fleet, a trend was no-
ticed in the high than expected number of failure
of an air duct joint due vibration. To maintain
the reliability of the engine fleet, a modification
was developed and implemented.

The same information in the repository will also be used
by design engineers working on a new engine:

The design team for the next variant of this
engine reviews the performance of the air bleed
system across the fleet to learn from previous de-
sign rationale and operational history. Finite el-
ement analysis showed that a joint failure could

occur due to vibration if certain operational con-
ditions were met. It was therefore decided that
the future variant of the engine would both elim-
inate the joint and reroute the duct work. The
revised design costs 50% more than the original.
However, the saving over the life of the engine
will be substantial due to lower likelihood of in-
service failure.

The goal of our work can thus be summarized as follows:
To feedback and harvest knowledge gained from the after-
market operations documents to help (a) operations engi-
neers in designing modifications to existing engines, and
(b) design engineers in designing the next variant engine
for the aftermarket.

S. DOCUMENTS AND ONTOLOGY

For each maintenance event, maintenance engineers docu-
ment information surrounding the event for later reference.
A maintenance event occurs whenever actions are performed
on an engine. Usually, each maintenance event involves mul-
tiple actions. Information documented includes the circum-
stances of the event, actions taken, parts installed and re-
moved and any other findings they observed. The engineers
who created these documents are located in numerous sites
around the world, in the manufacturer’s or third party re-
pair bases or at airports. Most of the maintenance engineer-
ing documents reside in a centralized Service Data Manager
(SDM).

To enable machines to interpret meanings stored within
the documents, we need an ontology that captures all the
terms and concepts used. Moreover, since the document
repository is to be used by both design and service engi-
neers, the ontology should capture concepts from engineers
working in both areas. The ontology is created by analyzing
existing documents and conducting knowledge acquisition
interviews with engineers [23]. The engineers interviewed
are carefully selected and are domain experts from several
different specialization. The result of these interviews en-
abled us to identify, by specialism, the main concepts and
the associated keyword for these concepts used by the par-
ticular type of engineer when searching for information.

The resulting ontology contains concepts ranging from en-
gine deterioration mechanisms, engine models and parts to
airport locations. Figure 3 shows a UML class diagram for
the concepts associated with maintenance events in the ap-
plication ontology. In the diagram, the square boxes are
concepts, or classes, in the ontology. Underneath the name
of the class is a list of attributes for the class. In the ontol-
ogy, a UML attribute is modeled as an OWL property which
has the specified class as its domain. The lines connecting
two classes in the diagram are associations. Associations
represent relationships between classes. The arrow on the
line shows the direction of the association. A UML associa-
tion is modeled with an OWL property which has the linked
classes as its domain and range. In addition, the Component
class contains a taxonomy of aero-engine parts, and the En-
gine class includes a list of exiting engine types. In total,
the ontology has 896 classes and 133 properties. Most of the
classes represent parts within the engine taxonomy.

We populated this ontology with maintenance records from
the SDM database. The maintenance records used are for
the Trent 500 engine over a period of 5 years. There are ap-

serial_number

7
s
\G”G’C/
ServiceEventReport eois,, X SorviceEvent
report_number N Sategory
Ztgta];?cr)n date ! N location
title m operating_regime
—HIeMed_service_gyeng reaction
symptom
engine_hours_since_new
engine_cycles_since_new
1 event_type
md\“g free_form_string_value
oS- b
ServiceFinding n
finding_zone has_action
finding_condition
n
ServiceActionPerformed
Component ; Ioc_auon
part_number 1 aczlon,type
serial_number " ->| category
unit_cost has_action_part action_disposition

pull_category
pull_code

Figure 3: UML class diagram for the ontology used
to describe maintenance events. This is a simplified
view and does not show all properties and classes
defined in the ontology.

proximately 3250 maintenance events, with around 31,000
actions. The populated RDF store currently contains 316,240
ground triples and 213,330 inferred triples.

6. USER REQUIREMENTS

To understand the scope of knowledge our users want
to gain from an engine’s service history, a questionnaire-
based study was conducted with design engineers from Rolls-
Royce [13]. In the questionnaire, engineers were presented
a list of questions relating to maintenance experience with
a product. They were asked how often they might ask them
when designing a new product. They were also asked what
other questions they might want to ask. The result of this
questionnaire tells us what are the most important and most
common life cycle information design engineers seek from
maintenance documents.

The study identified 39 questions commonly asked by de-
sign engineers. Only a small number of the 39 questions
involve complex mathematical and numerical simulations,
which cannot be answered from semantic analysis of main-
tenance documents. Most of the questions are concerned
with textual and semantic information stored within the
documents. However, to answer even these textual based
questions requires some degree of simple arithmetical ma-
nipulation, as demonstrated by the following examples:

1. What are the common deterioration mechanisms asso-
ciated with this part?

2. Are there any other mechanisms, which only occur
rarely?

3. How many engine removals have been caused by a de-
terioration of this part?

4. Which parts dominate the reliability and cost drivers
in this engine?

5. How critical is it if and when this part fails?

These five questions can be broadly classified as belonging
to two categories — ranking and scoring. To answer ques-
tions 1 to 3, we need to first find the occurrence of a pattern
within the documents. Afterwards, we rank the occurrences
to obtain a list in ascending or descending order. Specifi-
cally, in a SPARQL query, the pattern is a RDF triple, or
a series of RDF triples. We say that questions 1 to 3 is
a ranking problem. Question 4 contains two sub-questions,
sorting parts that are serviced most by frequency and by
cost. Obtaining a list of parts by service frequency is a
ranking problem. Sorting by cost requires the multiplication
of unit costs of parts with their service frequencies. We say
that it is a scoring problem in addition of being a ranking
one. For question 5, criticality is measured by the reaction
taken by front-line maintenance engineers. Each reaction is
assigned a criticality score. Therefore, question 5 is also a
scoring problem.

In the next section, we explain in detail how to answer
question 4 using SPARQL. Question 4 is used as an exam-
ple because it contains both ranking and scoring. Then in
Section 8, we present a comparative implementation of the
same question using SQL. The purpose of the comparison
is to demonstrate how ranking and scoring problems are
impossible to answer using SPARQL alone, but extremely
simple with SQL.

7. SPARQL IMPLEMENTATION

When asking question 4, the engineer wants a sorted list of
parts ordered by (1) service frequency, and (2) total accumu-
lated cost of maintenance. As input, the question requires
the engineer to select an engine model that interests him or
her. Inside the maintenance documents, engine models are
recorded using their sub-model numbers. For example, the
Trent 500 engine has two sub-models, the Trent 553 and the
556. Therefore, we made the Trent 553 and 556 subclasses of
the Trent 500 in the ontology. Users can use the term Trent
500 to search for documents on both sub-models. Similarly,
within the maintenance documents, parts are only referred
to using their part numbers, such as ET10935. It should be
noted that parts with different part numbers can be identi-
cal in functionality. To generate results meaningful to the
engineers, we combine information from both design and
maintenance and associate part numbers with their types.
By correctly instantiating the parts involved in the Compo-
nent hierarchy of the ontology, we can group functionally
identical parts together within a query. Using the ontology,
we can return a list of parts based on functional groupings,
and not simply distinct part numbers.

The first step in answering part 1 of the question is to
obtain a complete list of part installation and removal using
the SPARQL query shown in Figure 4. This query looks for
all triples that contains the has_action_part predicate, and
obtains the functional type of the part used in that action.

The result returned by this query is simply a complete list
of parts that are named in all service actions. There is no
grouping, and if a part is named in multiple service actions,
it will appear multiple times in the result set, as shown in
Figure 5. The number of results returned depends on the
number of service actions stored inside the target triplestore.
With 31,000 actions stored, the result table returned will
have 31,000 rows.

PREFIX ipas:<http://www.3 worlds.org/ipas.owl#>
PREFIX rdfs:<http://www.w3.0rg/2000/01/rdf—schemat
PREFIX ep:<http://www.3 worlds.org/parts#>

SELECT ?7type
‘WHERE
{
?7a ipas:has_action_part ?part
?part a 7type .
7type rdfs:subClassOf ep:Trent500_Components

SELECT 7c
‘WHERE

<http://www.3 worlds.org/parts#Blade_Assy>
ipas:has_unit_cost 7c

Figure 4: SPARQL query to obtain a complete list
of part installation and removal.

part

http://www.3worlds.org/parts#Blade_Assy
http://www.3worlds.org/parts#Blade_Assy
http://wuw.3worlds.org/parts#Blade_Hp_Turbine
http://wuw.3worlds.org/parts#Blade_Assy
http://www.3worlds.org/parts#Sav
http://wuw.3worlds.org/parts#Eec
http://wuw.3worlds.org/events.owl#Blade_Hp_Turbine
http://www.3worlds.org/parts#Ignition_Unit
http://wuw.3worlds.org/parts#Blade_Rotor
http://www.3worlds.org/parts#Sav

Figure 5: First 10 rows of the result table returned
from a SPARQL query for obtaining a complete list
of part installations and removals (Figure 4).

After obtaining the list of part installation and removal
shown in Figure 5, we count the number of occurrences of
each part within the list. This gives us a list of occurrences,
as shown in Figure 6. Sorting this table in decreasing order
according to the occurrence column gives us the list of most
serviced part. The counting and sorting cannot be done
using SPARQL and must be performed with custom software
written in a language such as Java.

The second part of the question asks for a list of parts
sorted by accumulated cost of maintenance. To achieve this,
we issue a SPARQL query for each part that appears in the
occurrence table. If there are 1000 distinct parts in the
occurrence table, 1000 queries are issued. The query in Fig-
ure 7 retrieves the cost of a Blade_Assy. We then multiply
the unit cost for each part with the number of occurrences.
The result of the multiplication is the total accumulated cost
of service for the part. Lastly, we sort the part list in de-
scending order according to the total cost. This gives us a

part | occurrence
http://.../parts#Sav 138
http://.../parts#Blade_Assy 1081
http://.../parts#Blade_Rotor 12
http://.../parts#Blade_Hp_Turbine 169
http://.../parts#Eec 97

Figure 6: A list of the total number of times a part
has been serviced. This is obtained by counting the
number of occurrences of a part in the list in Fig-
ure 5 using a custom program.

Figure 7: SPARQL query to obtain the unit cost of
a part.

list of parts that cost most in servicing. The iteration of
the result table, the multiplication, the summation and the
sorting are all performed using external software.

8. COMPARISON WITH SQL

For the comparative SQL implementation, we use a sim-
ple mapping from ontology to relational database schema.
We create a database table for each class in the UML class
diagram in Figure 3. Attributes for each class are mapped
as column headings in the corresponding table. Associations
are mapped to primary and foreign keys.

However, with a relational database, no ontology is used
to add semantic meanings to terms and concepts within the
documents. Therefore a SQL query searching for the term
Trent 500 would not automatically expand the query to in-
clude the sub-models of the engine. Similarly, we cannot
directly query engine parts using their functional names, as
they do not exist in the original documents. We could extend
the database tables to include design information such as
sub-model and part functional names. We can then perform
JOINSs on these design tables with the maintenance record
tables. However, this is not implemented here because the
purpose of this section is to demonstrate the grouping, ag-
gregation and variable operations of SQL. We believe intro-
ducing JOINs in the examples will only confuse the issue.

To find the list of parts ordered by service frequency, we
use the SQL query in Figure 8. This single SQL query finds

SELECT action_part ,
COOUNT(action_part) AS occurrence
FROM ServiceActionPerformed
GROUP BY action_part
ORDER BY occurrence DESC

Figure 8: SQL query to obtain the list of parts or-
dered by service frequency.

all the parts referenced in service actions, counts the number
of occurrences of each part, and sorts the result by the num-
ber of occurrences. Unlike the SPARQL implementation, no
additional code is needed to group, count and sort the result
returned by the query engine. The reason behind the dif-
ference is because of data grouping and aggregation support
in SQL. In this query, we use the GROUP BY command
to group all entries with the same action_part together.
We then apply the COUNT aggregate function to count the
number of occurrences for each action_part. The result is
then sorted by occurrence using the ORDER BY command.

SPARQL also supports the ORDER BY command. How-
ever, you cannot group the result and count the number
of occurrences within SPARQL. As a result, the variable
we want to ORDER BY is not available within SPARQL.

Therefore, external software must be used to sort the result.
To find the list of parts sorted by total cost of servicing,
we use the SQL query shown in Figure 9. The query for ob-

SELECT c.action_part ,
(c.action_part * c.unit_cost) AS cost
FROM Cost ¢ INNER JOIN
(SELECT action_part ,
OOUNT(action_part) AS occurrence
FROM ServiceActionPerformed
GROUP BY action_part) o
ON c.action_part = o.action_part
ORDER BY cost DESC

Figure 9: SQL query to obtain the list of parts or-
dered by cost of servicing.

taining the number of occurrences for each part (Figure 8)
is repeated here as a nested inner query. The only difference
is that the nested query does not sort the result using an
ORDER BY. This is because we are interested in sorting
the result by cost, not by occurrence. The inner query pro-
vided us with a list of part occurrence, similar to the one in
Figure 6. This occurrence table is then joined with the Cost
table. We calculate the total cost of servicing each part by
multiplying the number of occurrences for each part by its
unit cost. The result is sorted from the most costly to the
least using ORDER BY.

SQL supports arithmetic operations on SELECTed vari-
ables. We use this feature in the second query to multiply
the number of occurrences with the unit cost for each part
found. In comparison, this is not possible in SPARQL. The
multiplication must be performed with external software
written for this purpose. It should be noted that SPARQL
does support arithmetic operations, but only in the FILTER
command.

9. IMPLICATIONS

Without the basic numerical support as described in the
previous section, it is difficult for SPARQL to answer com-
mon knowledge questions about the data beyond simple tex-
tual inquiries. These basic numerical questions also com-
monly appear outside the application of maintenance expe-
rience transfer in aerospace manufacturers. As a result, this
problem has a much wider and general impact on the suit-
ability of SPARQL, and thus RDF triplestores, in knowledge
systems.

Aggregate functions in SQL operate against a collection
of values, but return a single value. They are very use-
ful for data summarization. Besides the COUNT function
used in the example earlier, SQL has other useful aggregate
functions such as MAX and AVG. The following is a list of
aggregate functions and the type of questions they answer:

e COUNT - “How many X exists?” For example, in a
restaurant recommendation application, the user might

be interested to know how many restaurants in Southamp-

ton have a five-star rating. Or for a digital library, we
might want to know how many authors there are in
the system.

e MAX/MIN - “What is the most/least Y of X?” For
example, what is most or least expensive three bed-
room house listed for sale in Southampton?

e AVG - “What is the average Y of X?” For example,
what is the average user rating for this movie?

e SUM - “What is the sum of X?” For example, what is
the total value of non-fiction books sold this week?

Without GROUP BY, the aggregate functions return the
appropriate aggregate of all column values in the result ta-
ble. By using GROUP BY, we obtain the aggregate for each
individual group instead. Most of the user questions raised
by design engineers in our target application requires both
grouping and aggregation. We called this type of question
ranking problems in Section 6. Ranking problems usually
manifest themselves as:

e “How many of X in each Y?” For example, how many
researches work in each research area in the University
of Southampton? Or what type of restaurant can we
find in Southampton and what is the average price for
each type?

e “Give me a list of N most/least Y of X?” By adding
a ORDER BY to the grouping function, we can sort
the output according to the aggregated values. For
example, a list of the top 10 most published researchers
or highest user rated movie.

The aggregate functions summarize data in a column in
the result table. However, there are times when we want to
combine values stored in multiple columns in the same row.
In other words, we want to be able to apply operations on
multiple SELECTed variables. Scoring problems identified
in Section 6 require this type of operation. For example, in
the question “which part dominates the cost drivers in this
engine”, we need to multiply the unit cost by the number of
occurrences. In a restaurant review website, a user might be
asked to rate restaurants according to several aspects, such
as food, price, ambience and service. To calculate the overall
rating for a restaurant, we will need to sum the separate
ratings together.

Since SPARQL does not support grouping, aggregating
and variable operations, extra processing in software code is
needed to answer the type of questions discussed. First, an
extra layer of processing with custom written software code
introduces an extra source of error. It is harder to debug a
long processing chain in software than a simple, single query.
Not to mention that writing software takes time and effort.
Second, operations performed by a database is much faster
than iterating through result sets in programming lanugages
such as Java. This is because the database is optimized to
executing query code. As a result, if something can be per-
formed in SQL, it should not be performed using Java [11].

Table 1 shows the speed of execution of the SPARQL and
SQL implementations for the first part of question 4 in Sec-
tion 6, “which parts dominate the reliability drivers in this
engine”. The experiment is run 10 times for both imple-
mentations. A Linux machine with an Intel Xeon 3.00 GHz
CPU and 1 GB of RAM is used. For the SPARQL imple-
mentation, we used 3store [9] as our RDF store. 3store is
a fast, efficient RDF store written in C designed for large
datasets. Persistence in 3store is backed by the MySQL re-
lational database. Sorting in Java is performed using Col-
lections.sort() in the J2SE standard library. For the SQL
implementation, we used the same MySQL installation and
issued SQL queries in Java using JDBC. The result for the

Table 1: Time (in milliseconds) to answer the ques-
tion “which parts dominate the reliability drivers in
this engine?”

| SPARQL | SQL
Mean 3512.5 16.4
Std. dev. 177.1 9.2

SPARQL implementation is well clustered around the mean,
with the standard deviation only 5% of the mean value. For
the SQL implementation, the standard deviation is over 50%
of the mean. This is because the execution time is so short
that the result is highly dependent on the variation in oper-
ation system scheduling and processor load during the time
of execution.

10. RECOMMENDATIONS

RDF stores commonly use relational databases for per-
sistent storage, for example, Jena®, Sesame® and 3store.
Therefore, SPARQL commands are internally translated to
SQL commands by these semantic web toolkits to query
the underlying relational database. As a result, it is rela-
tively straightforward to add existing SQL functionalities to
an implementation of SPARQL. Due to this close coupling
between SPARQL and SQL, and the importance of these
features to industrial applications, we suggest that group-
ing, aggregation and variable operations be added to the
specification of SPARQL.

Lets take the example of grouping and aggregation. For
the SPARQL query in Figure 4, 3store translates it to the
SQL query in Figure 10. Both queries have one SELECT

Table 2: Time (in milliseconds) to answer the ques-
tion “which parts dominate the reliability drivers in
this engine?”

| SPARQL with Grouping and Aggregation
Mean 2751.3
Std. dev. 72.5

type, similar to the query in Figure 8. Figure 11 shows a
SPARQL query that supports SQL style grouping and ag-
gregation. The suggested syntax borrows heavily from the
original SQL syntax. This SPARQL query can be imple-
mented in SQL as shown in Figure 12.

SELECT ?type, COUNI(?type) AS 7occurrence
‘WHERE
{

?7a ipas:has_action_part ?part

?part a 7type .

7type rdfs:subClassOf ep:Trent500_Components

¥
GROUP BY ?type
ORDER BY 7occurrence DESC

Figure 11: Suggested SPARQL syntax for grouping
and aggregation.

SELECT v0.lexical AS ‘type*
FROM (SELECT t1.object AS ‘_TVO‘,
t2.object AS ‘type‘,
t0.subject AS ‘action ¢,
t0.object AS ‘part‘
FROM triples t0, triples t1,
triples t2, triples t3
WHERE t3.0object=—995897154303950976
AND t3.predicate=—5275523445234180533
AND t3.subject=t2.object
AND t2.predicate=—5275523445234180533
AND t2.subject=tl.object
AND t1.predicate=—4085280037482734459
AND t1.subject=t0.object
AND t0.predicate=—-5286098249812210380
) AS ‘tmp0_60ff‘, symbols vO
WHERE tmp0_60ff.type=v0.hash

SELECT v0.lexical AS ‘type‘,
COOUNT(type) AS occurrence
FROM (SELECT t1.object AS ‘_TVO‘,

WHERE tmp0_60ff.type=v0.hash
GROUP BY type
ORDER BY occurrence DESC

Figure 10: SQL created by 3store to query the un-
derlying relational database from the SPARQL in
Figure 4.

variable type. This variable matches to all serviced parts in
the database using the criteria specified. In the SPARQL
query, the matching criteria is specified within the WHERE
clause. This WHERE clause is translated by 3store to the
SQL statements after the initial SELECT line.

We need to count the rows in the result table, and order
the table according to the number of occurrences for each

3http://jena.sourceforge.net
“http://www.openrdf .org

Figure 12: Translation of suggested SPARQL query
in Figure 11 to SQL.

We implemented the query in Figure 12 using Java with
JDBC and ran the query 10 times over a MySQL relational
database. The execution time for this query is shown in
Table 2. Compared to counting, grouping and sorting the
result table in Java, there is a 21.7% improvement on query
speed. However, speed is not the reason why we recommend
adding grouping and aggregation to SPARQL. By adding
these functionalities that already exist in the underlying
query language (SQL), it makes it possible for SPARQL
and RDF stores to answer non-textual knowledge questions,
without the need of additional processing.

To support arithmetic operations on SELECTed variables,
a function that returns the lexical form of a literal is needed.
This is because literals in RDF can contain an optional lan-
guage or datatype tag:

e ‘“chat”@fr
e “1.3”" "xsd:decimal

The query language SeRQL from Sesame provides the func-
tions label(), lang() and datatype() for extracting the
different parts of literals. 1label() returns the lexical form, ie

chat and 1.3 in the above examples. lang() and datatype()
returns the language and datatype attributes respectively.
The results of these functions can then be used in opera-
tions on untyped values. Figure 13 shows an example on
how two columns in a result table are multiplied using the
label() function.

SELECT ?type, (LABEL(?cost) * LABEL(?num))
WHERE

{

7a ipas:has_num_part_used ?num

?7a ipas:has_action_part ?part

?part ipas:has_unit_cost 7cost

?part a Ttype .

7type rdfs:subClassOf ep:Trent500_Components

Figure 13: Suggested SPARQL syntax for variable
operations.

11. CONCLUSIONS

In this paper, we described the problems we found in a
large-scale application of the Semantic Web for an industrial
document repository. The repository is to be used within
an aerospace manufacturer, to enable knowledge transfer
from front-line maintenance to the design of new engines.
The motivation behind this knowledge transfer is the fun-
damental shift that is occurring in the aerospace industry
away from selling products to providing services. This shift
in market focus means that new engines must be designed
to provide lower and more predictable life cycle costs. To
achieve this, engineers must obtain knowledge gained from
the entire life of an engine.

Semantic Web technologies are selected for this applica-
tion because of the ease of integrating distributed sources
of information via a shared ontology. This is important to
the aerospace industry because maintenance and design en-
gineers are located in numerous different sites around the
world. Additionally, semantic reasoning provided by an on-
tology allows us to find relevant documents that do not con-
tain the words specified in the search, but are merely im-
plied.

However, after we shared and integrated these distributed

documents using RDF | it became apparent to us that SPARQL

cannot answer the questions sought by our users. This is be-
cause SPARQL is designed to answer only textual queries.
However, we found that even though our users’ queries are
concerned with textual and semantic information inside the
documents, some degree of simple arithmetic manipulation
is required to answer them. We generalized the problem
found into other application domains, and summarized the
types of questions that SPARQL is ill-equipped to handle.

To demonstrate the problem with SPARQL, we showed an
example of the process needed to answer one of our users’
questions. We showed that SQL-styled aggregation, group-
ing and variable operations are necessary to generate the
results required. With our SPARQL implementation, we
developed custom written software to perform these oper-
ations. We compared the speed of execution for the two
implementations.

We argued that since most existing RDF stores are built
upon relational databases, features available in SQL can eas-
ily be made available to SPARQL. We showed such an im-

plementation of aggregation and grouping with a RDF store
called 3store. We compared the speed of execution of this
modified SPARQL implementation on a user query with the
original SPARQL implementation, and found a speed im-
provement of 21.7%. More importantly, the additional fea-
tures eliminate the need for extra processing in software,
thus allowing for more rapid and error-free development of
Semantic Web applications. We also made suggestions on
additions to SPARQL needed to support variable operations.

12. ACKNOWLEDGMENTS

This research was undertaken as part of the IPAS project
(DTI Grant TP/2/1C/6/1/10292). The authors would also
like to thank the project partners for providing us with data
and ontologies. Specifically, we would like to thank Derek
Sleeman and David Fowler from the Department of Com-
puting Science, University of Aberdeen for the ontology, and
Alymer Johnson and Santosh Jagtap from the Engineering
Design Centre, Cambridge University for the user require-
ment analysis.

13. REFERENCES

[1] L. Carr, W. Hall, S. Bechhofer, and C. Goble.
Conceptual linking: Ontology-based open hypermedia.
In Proceedings of 10th International World Wide Web
Conference (WWW), pages 334-342, Hong Kong,
2001.

[2] R. M. Crowder, W. Hall, I. Heath, and G. Wills.
Industrial strength hypermedia: Design,
implementation and application. International Journal
of Computer Integrated Manufacturing, 13(3):173-186,
2000.

[3] H. Davis, W. Hall, I. Heath, G. Hill, and R. Wilkins.
Towards an integrated information environment with
open hypermedia systems. In ECHT ’92: Proceedings
of the ACM conference on Hypertext, pages 181-190,
New York, NY, USA, 1992. ACM Press.

[4] P. De Bra. Pros and cons of adaptive hypermedia in
web-based education. Cyberpsychology and Behavior,
3(1):71-77, 2000.

[5] A. Dunlop, M. Papiani, and A. Hey. Providing access
to a multimedia archive using the world wide web and
an object-relational database management system.
IEE Computing and Control, 7(5):221-226, 1996.

[6] A. M. Fountain, W. Hall, I. Heath, and H. C. Davis.
MICROCOSM: an open model for hypermedia with
dynamic linking, pages 298-311. Cambridge University
Press, New York, NY, USA, 1992.

[7] Y. Gao, 1. Zeid, and T. Bardasz. Characteristics of an
effective design plan system to support reuse in
case-based mechanical design. Knowledge-Based
Systems Knowledge-Based Systems Knowledge-Based
Systems, 10(6):337-350, Apr. 1998.

[8] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A
comparison of rdf query languages. In Proceedings of
3rd International Semantic Web Conference (ISWC),
pages 502-517. Springer, 2004.

[9] S. Harris and N. Gibbins. 3store: Efficient bulk RDF
storage. In Proceedings of 1st International Workshop
on Practical and Scalable Semantic Systems
(PSSS’03), pages 1-15, Sanibel Island, Florida, 2003.

[10] A. Harrison. Design for service — harmonising product
design with a services strategy. In Proceedings of
GT2006, ASME Turbo Ezxpo 2006: Power for Land,
Sea and Air, Barcelona, Spain, May 2006.

[11] C. S. Horstmann and G. Cornell. Core Java 2
Advanced Features, chapter 4 Database Connectivity:
JDBC. Prentice Hall, 2002.

[12] H. H. S. Ip, K. C. K. Law, and S. L. Chan. An open
framework for a multimedia medical document system
(a multimedia document system framework). Journal
of Microcomput. Applications, 18(3):215-232, 1995.

[13] S. Jagtap, A. Johnson, M. Aurisicchio, and
K. Wallace. Pilot empirical study: Interviews with
product designers and service engineers. Technical
Report 140 CUED/C-EDC/TR140- March 2006,
Engineering Design Centre, University of Cambridge,
2006.

[14] D. V. Khadilkar and L. A. Stauffer. An experimental
evaluation of design information reuse during
conceptual design. Journal of Engineering Design,
7(4):331-339, 1996.

[15] K. C. Malcolm, S. E. Poltrock, and D. Schuler.
Industrial strength hypermedia: Requirements for a
large engineering enterprise. In Proceedings of the
Third ACM Conference on Hypertext, pages 13—24,
Dec. 1991.

[16] F. Manola and E. Miller. RDF primer. Technical
report, W3C Recommendation,
http://wuw.w3.org/TR/rdf-primer, Feb. 2004.

[17] D. M. McRae-Spencer and N. R. Shadbolt.
Semiometrics: Applying ontologies across large-scale

digital libraries. In Proceedings of Second International

Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS), Athens, Georgia, USA, 2006.
[18] N. Noy and M. Klein. Ontology evolution: Not the

same as schema evolution. Knowledge and Information

Systems, 6(4):428-440, 2004.

[19] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. Technical report, W3C Working
Draft, http://www.w3.org/TR/rdf-sparql-query,
Oct. 2006.

[20] N. Shadbolt, W. Hall, and T. Berners-Lee. The
semantic web revisited. IEEE Intelligent Systems,
21(3):96-101, 2006.

[21] W. Siberski, J. Z. Pan, and U. Thaden. Querying the
semantic web with preferences. In Proceedings of 5th
International Semantic Web Conference (ISWC),
2006.

[22] J. van Ossenbruggen, L. Hardman, and L. Rutledge.
Hypermedia and the semantic web: A research
agenda. Journal of Digital Information, 3(1), 2002.

[23] G. Wills, D. Fowler, D. Sleeman, R. Crowder,

S. Kampa, L. Carr, and D. Knott. Issues in moving to
a semantic web for a large corporation. In Proceedings
of 5th International Conference on Practical Aspects
of Knowledge Management (PAKM), volume 3336 of
Lecture Notes in Artificial Intelligence, pages 378—-388.
Springer, 2004.

[24] S. C. Wong, R. M. Crowder, G. B. Wills, and N. R.
Shadbolt. Knowledge engineering - from front-line
support to preliminary design. In D. F. Brailsford,
editor, Proceedings of ACM Symposium on Document

Engineering (DocEng), pages 44-52, Amsterdam, The
Netherlands, Oct. 2006.

