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ABSTRACT

The widespread deployment of recommender systems has
lead to user feedback of varying quality. While some
users faithfully express their true opinion, many provide
noisy ratings which can be detrimental to the quality of
the generated recommendations. The presence of noise
can violate modeling assumptions and may thus lead to
instabilities in estimation and prediction. Even worse,
malicious users can deliberately insert attack profiles in an
attempt to bias the recommender system to their benefit.

Robust statistics is an area within statistics where esti-
mation methods have been developed that deteriorate more
gracefully in the presence of unmodeled noise and slight
departures from modeling assumptions. In this work, we
study how such robust statistical methods, in particular M-
estimators, can be used to generate stable recommendation
even in the presence of noise and spam. To that extent, we
present a Robust Matrix Factorization algorithm and study
its stability. We conclude that M-estimators do not add
significant stability to recommendation; however the pre-
sented algorithm can outperform existing recommendation
algorithms in its recommendation quality.

Categories and Subject Descriptors

H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval—Collaborative Filtering, robust
statistics; G.3 [Probability And Statistics]: Robust
regression

General Terms
Algorithms

1. INTRODUCTION

Service providers on the World Wide Web operate in a
cut-throat environment where even satisfied customers and
growth do not guarantee continued success. As users become
ever more proficient in their use of the web and are exposed
to a wider range of experiences, they are becoming more
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demanding, and their definition of what constitutes good
service is rapidly changing and being refined. Given the user
population of the web, it is difficult to come up with a one
size fits all approach. A successful mechanism to deal with
the demands of such a heterogeneous user population is to
modify contents, characteristics, or appearance of web based
systems with respect to a specific user. This is referred to
as Personalization, and is distinguished from customization
by the use of implicit and assumed preferences.

To measure user perception of personalization and its
effectiveness, surveys were conducted by Choicestream in
2004 and 2005. The results of the survey clearly point to
the fact that customers realize the value of personalized
content; they are willing to spend more effort and money to
get a better service customized according to their individual
preferences.

The popularity of Recommender Systems has attracted
users with malicious intent to bias recommendations in
their favor. Other users provide low quality ratings which
deviate from the statistical assumptions made by various
collaborative filtering algorithms. As a result, there is a
danger of producing low quality or faulty outputs from
recommender systems which may result in user loosing faith
in the system. Recent research has revealed the vulnerability
of similarity-based collaborative filtering. ~While recent
algorithms [17, 16] are successful in identifying spam in
collaborative filtering, it is desirable to develop algorithms
which are robust to spam from the ground up. A robust
collaborative filtering algorithm would provide protection
from insertion of random noise as well as attack profiles
injected into the system without any explicit detection.
Robust statistical methods like M-estimators [11] that have
been used successfully in statistics provide an alternative
approach when data have abnormal entries, e.g. due to
outliers.

In this work, we propose a matrix factorization algorithm
based on robust M-estimators and compare it with various
other algorithms. The resulting algorithm provides more
stability against spam than previous approaches, but is
outperformed by newer versions of SVD in robustness. How-
ever, the predictive performance of our proposed algorithm
is better than other robust approaches like PLSA and the
newly invented SVD based on Hebbian learning.

2. COLLABORATIVE FILTERING SPAM

Collaborative Filtering systems are essentially social sys-
tems which base their recommendation on the judgment
of a large number of people. Like other social systems,
they are also vulnerable to manipulation by malicious social
elements. One example is when a loosely organized group



managed to trick the Amazon recommender into correlating
a book titled Siz Steps to a Spiritual Life (written by the
evangelist Pat Robertson) with a book for gay men".

A lot of web-enabled systems provide free access to users
via simple registration processes. This can be exploited by
attackers to create multiple identities for the same system
and insert ratings in a manner that affect the robustness of
a system or algorithm, as has been studied in recent work
[13, 20]. Profile injection attacks add a few profiles (say
3% of the total profiles) which need to be identified and
protected against. Such attacks have been referred to as
shilling attacks, a specific form of spam. Profile injection
attacks can be classified into two basic categories: inserting
malicious profiles which rate a particular item highly are
called push attacks, while inserting malicious profiles aimed
at downgrading the popularity of an item are called nuke
attacks [20]. Research in the area of shilling attacks [20] has
made significant advances in the last couple of years. Early
work identified the threat of shilling attacks and the types
of attack (nuke and push). Various attack strategies were
then discovered and appropriate metrics were developed to
measure the effectiveness of an attack. Attacks strategies
include [18]:

1. Random attacks, where a subset of items is rated
randomly around the overall mean vote.

2. Awverage attacks, where a subset of items is rated
randomly around the mean vote of every item

3. Bandwagon attacks, where a subset of items is rated
randomly around the overall mean, and some popular
items are rated with the maximum vote.

Note that Gaussian distributions N, . have been used
for generating the random votes rather than the uniform
random distribution. This implies that attack profiles have
votes near, or equal to the mean vote with a very high
probability. Also, standard deviation of the complete set
of votes is used for random and bandwagon attacks, while
the standard deviation of the each individual item is used
for the average attack. [16] provide analytical proof for the
average attack being the strongest attack?.

Recent research in this area aimed at finding solutions
to detecting profile injection attacks. The earliest spam
detection algorithm based on features of spam profiles was
invented by Chirita et al. [3]. While this algorithm was
successful in detecting shilling attacks with dense attacker
profiles, it was unsuccessful against attacks, which are small
in size or have high sparsity. Mobasher et al. [18] compare
their feature-based classification algorithm which performs
significantly better than the Chirita algorithm by taking
more features into account. The Mobasher et al. [1§]
algorithm trains a classifier given enough example spam and
authentic profiles and is fairly accurate in detecting spam
attacks of varying sizes and density. Two disadvantages of
their approach come to mind: firstly, a supervised approach
needs a large number of examples, and can detect only
profiles similar to the examples profiles. Secondly, these
algorithms perform badly when the spam profiles are ob-
fuscated. Adding noise, shifting targets, or shifting all user
ratings differently makes the attack profiles more difficult
to detect for existing feature based detection algorithms.
Williams et al. [25] discusses these obfuscation strategies and
their effect on detection precision. O’Mahony et al. [21] have

!Story at http://news.com.com/2100-1023-976435.html.

2Using exact item means is the actual strongest attack
possible.
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taken up a more principled approach using signal processing
theory to detect natural and malicious noise; however, the
accuracy remains low (15-25%). Recent work [17, 16]
provide highly accurate detection methods by exploiting the
group effect: a property of spam users to work together.
These recent methods are based on dimensionality reduction
and detect spam with high accuracy. However, detection
procedures can be applied only sparingly due to their highly
computational and batch nature. Our approach in this
paper is to use the insight gained in the design of detection
procedures to create a robust alternative to SVD.

3. SVD AND ITS VARIATIONS

SVD stands for Singular Value Decomposition; it is
a method of factorizing a matrix into two orthonormal
matrices and a diagonal matrix. It stems from the Spectral
Theorem [12]; SVD is a more general decomposition than
Spectral decomposition since it is applicable to rectangular
matrices as well. SVD factorizes a rectangular n x m matrix
D as follows

D=UxVT, (1)

where U, V are unitary normal matrices and X is a diagonal
matrix of size rank(D) < min(m,n), where rank(D) is the
rank of the matrix D. Moreover, the entries on the diagonal
of 3 are in non-increasing order such that o; > o; for all
i < j. Note that we may chose to set all singular values
o0; =0, 1 > k for some k < rank(D) (say k = 10), leading to
an low rank approximation Dy of the matrix D.

D, =U,X, Vi, (2)

where U, 3, V are now n X k, k X k and m X k dimensional
matrices, respectively. It can be shown that Dy is the
minimizer of |[D — DJ|2 for all matrices D of rank less
or equal to k. [1] provides more details on properties
of SVD. The SVD is interesting in the context of many
data analysis applications, since real-world data can often
be approximated well by a few independent dimensions.

Applications of SVD to Collaborative Filtering assume the
representation of user-item ratings by such a n x m matrix
D. Here each of the n users corresponds a row in the matrix,
whereas the m items are represented as columns, with D;;
representing the vote of user i on item j. The application of
SVD to D leads to a low rank estimate 157 which generalizes
the observed data, since it may result in non-zero values Dih
even for user-item pairs (i,1) that are unrated (often set to
zero in D, i.e. Dy = 0).

Typically, user—item matrices are very sparse (< 5% non-
zero entries) and the presence of a large number of zeros
can make the computation of SVD very biased towards
unobserved values. Initial applications of SVD to CF such as
[23] tried to compensate for that by using the overall means
for missing values. This approach, though more successful
than previous approaches is highly biased towards the used
means. In the last decade, there has been significant re-
search on computation of SVD for large and sparse matrices.
Significant work has been done in the design of PROPACK?
and SVDPACK*®. However, these approaches do not treat
missing values in a principled fashion. [26] discusses
the use of the Expectation Maximization [4] procedure
to approximate SVD optimally in the log-likelihood sense.
However, their approach requires a SVD to be performed at

Shttp:/ /soi.stanford.edu/ rmunk/PROPACK/
“http://www.netlib.org/svdpack/




each EM iteration, which cannot be scaled to large matrices,
since it is improbable that any method which needs more
than a few hundred iterations over the entire data can be
scaled to large matrices with millions of rows.

A recent algorithm by Gorrell [6] proposed a new approach
to computing SVD for virtually unbounded matrices. This
method is based on the Generalized Hebbian Algorithm [22]
and calculates SVD by iterating through only observed
values. The method has come into the limelight following
its use in the Netfliz contest® by a top-10 contestant named
Simon Funk [24]. The advantage of this approach is that it
uses a simple Hebbian learning rule which is easily expressed
in “two lines of code” [24]. The method has been found to
be highly accurate for CF and scales easily to a matrix with
8.4 billion potential values. Below we describe this approach
in detail.

3.1 SVD using Hebbian learning

Gorrell [6] extends an existing method for eigen decompo-
sition to non-symmetric matrices of arbitrary sizes. In her
approach, multiple eigen-values/vectors can be computed
with this simple observation: the second eigen-value/vector
of a matrix can be calculated by removing the projection of
the previous eigenpair. This means that if u; and v; are the
first singular vectors corresponding to the largest eigenvalue
o1, then a matrix Dy,.n can be defined as follows

T
Diem =D —uioivy

®3)

The first eigen-value/vector of Dyem is exactly the second
eigenvalue of D. This observation can be generalized to
compute the first k eigenvectors/eigenvalues of a large sparse
matrix. This method had been referred to as Hotelling’s
Deflation Method [9].

Mathematically the Hebbian learning rule can be ex-
pressed as follows: suppose u and v are the first eigenvectors
being trained for Matrix D, and D;; = x. Further, suppose
the eigenvalue o is absorbed into the singular vectors u and
v to yield &t and V. The estimate for x would then be

Lest = ﬂz . 73j . (4)

Since this estimate might have an error, lets suppose further
that the residual is represented by r(x).

()

To get a better estimate of the modified eigenvectors, the
Hebbian learning rule updates the value based on the error.

Aty =X-05-r(x), Adj = X0 - r(x), (6)

where A is the learning rate. It can be shown that with
the suitable choice of decaying learning rates, the repeated
iteration of the above equations converges to the required
eigenvectors if the matrix is complete®. After the first pair
of singular vectors has been learnt, their projection can be
removed (z < x — u1 - v1) and the next pair can be learnt.
Webb” modified this basic algorithm by introducing a weight
decay regularization factor as follows [?] :

A’lli = )\(’[)j T(:C) —H~’lli)7 Af}j = )\(’IL -r(m)—n~®j)7 (7)

(X)) =T — Test = — U - V5,

where k denotes the regularization strength. To ensure fewer
iterations, he suggests the use of a base estimate using item

Swww.netflixprize.com

SFor matrices with missing values, the above minimization
converges to a local minimum.

"Brandyn Webb uses a pen name Simon Webb in his blog
and has registered a NetFlix team with the same name
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averages (represented by j for item j) and the average user
offset. This gives a good estimate and reduces the number
of iterations by a factor of 2.

xbase(ivj) :j + kéXCG#O {xk - k} 5 (8)
Further modifications included clipping the estimated value
to the permissible range of values. Clipping makes this SVD
approach particular to CF, where data values are discrete
value bounded by a minimum and maximum rate (say 1-5).

D;/ =wpase(ir§) + Y Clip(i - bx) (9)
k

Where Clip() clips the value to between 1 and 5. Other
modifications have also been proposed but have been found
to have minor benefits. For the NetFlix dataset, k = 2540
has been found optimal. The performance of this simple
algorithm is surprisingly good: it performs up to 6% better
on the Netflix dataset than the baseline set by NetFlix®..
We have also experienced similar benefits in performance
when running this algorithm on other datasets.

4. OTHER ALGORITHMS FOR CF

In addition to SVD, other CF algorithms have been widely
deployed for collaborative filtering. We mention only two
here (PLSA and k-NN) for a reason: our objective is to test
to robustness of CF algorithms, and these two algorithms
have been studied previously. The k-NN algorithm using
Pearson’s similarity is a popular approach, but was found
highly susceptible to spam and serves as the baseline. PLSA
on the other hand was found to provide strong robustness
to spam [16, 19]. We later compare our proposed algorithm
to these two approaches.

4.1 Probabilistic Latent Semantic Analysis

PLSA [8] is a probabilistic variant of Latent Semantic
Analysis (LSA), which is an approach to identify hidden
semantic associations from co-occurrence data. The core of
PLSA is a latent variable model (also known as the aspect
model) for general co-occurrence data which associates
a hidden variable z € Z = {z1,22,...,2x} with each
observation. In the context of collaborative filtering, each
observation corresponds to a vote by a user to an item.
The space of observations is normally represented as an
M x N co-occurrence matrix (in our case, of M items)
Y = {y1,y2,.,ym} and N users X = {z1,2z2,..,xn}. The
aspect model can be described as the following generative
model:

e select a data item y from Y with probability P(y),
e pick a latent factor z with probability P(z|y),
e generate a data item x from X with probability P(x|z).

As aresult we obtain an observed pair (z,y), while the latent
factor variable z is discarded. Translating this process into
a joint probability model results in the following

P(z,ylz) = Y P(z,y,2) = ) _ P(ylz)P(z[2)P(z) (10)

This model is based on two independence assumptions:
first, observation pairs (z,y) are assumed to be generated
independently; second, conditioned on the latent factor z,
data item p; is assumed to be generated independently of
the specified item y. Since in collaborative filtering we are

Shttp://www.netflixprize.com



usually interested in predicting the vote for an item for a
given user, we are interested in the following conditional
model:

P(ylz,z) = Y P(yl2)P(zlz) (11)

The process of building a model that explains a set of obser-
vations (X,)) is reduced to the problem of finding values
for P(z),P(y|z), P(x|z) that maximize the (log)likelihood
of the observations. The model parameters P(z|u) and
P(y|z) are learnt using the FEzpectation Mazimization [4]
algorithm which is a standard procedure for latent variable
methods. The iterative use of the EM algorithm leads to a
conditional probability distribution for y, z which is optimal
in the log-likelihood sense. [8] provides more details on the
EM procedure for PLSA.

4.2 Pearson based k-NN

Basic collaborative filtering systems use a weighted re-
construction of the votes of users similar to the current
user to predict the likely rating for a previously unrated
item. Various improvements have been made to the basic
mechanism of predicting votes using Pearson’s correlation,
but they mostly comply to the following scheme: assume the
user database consists of a set of votes v;,; corresponding to
the vote for user ¢ on item j. The predicted vote for an
active user a for item j, pq,; is a weighted sum of the votes
of other (similar) users:

n
Payj =Ta+ £ Y w(a,i)(viy —Ti) (12)
i=1

where w(a, i) is the weight given to every user i from user
active user a, and v; and v, are the average rating given by
users ¢ and a, and k is a normalization factor.

Pearson’s Correlation based Collaborative Filter-
ing: The most popular k-NN CF algorithm uses a similarity
measure called Pearson’s Correlation. This is a standard
measure in statistics, that is applied here with only a small
modification: similarity is measured based only on items
where votes are available for both users. Predicted votes
v(i, j) are computed as defined in Eq. (12) with similarity
weights w(a, 1) defined as follows:

Ej(va,j —Tq)(vi; — Us)
\/Ej(va,j - va)Q Zj (’Ui,j — 57;)2

Various modifications to this scheme have been proposed in
the literature (cf. [7]) which can lead to better coverage and
higher accuracy. The principle behind these enhancements
is better neighborhood selection and weighting similarity
measures by the number of items that are co-voted by pairs
of users.

(13)

Wpearson (ay 74) -

5. ROBUST MATRIX FACTORIZATION

Matrix Factorization aims at learning a low rank approx-
imation of a Matrix D under certain constraints. This
technique is often applied in unsupervised learning from
incomplete matrices, and is related to SVD. Formally, the
problem is stated as follows: Given a matrix D, find matrix

factors G and H such that
D~ GH (14)

In general, MF can be applied to an n X m matrix to recover
Grxd, Hixm, where d < m,n. Thus MF is a low rank
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Figure 1: The effect of a single outlier on the least squares

estimate.

approximation of D under some cost function. One such
cost function is the Frobenius norm:

A =Bllr = [Y (Ay — Bi)? (15)
ij
Under this cost function, MF reduces to
argmin [|D — GH||r, (16)
G.H

which is a formulation that is equivalent to the SVD, if
singular values are absorbed appropriately into the left and
right singular vectors.

D=UxV"
D =GH,st. G =UXY?2 H=3x2V"

Under other cost functions, MF takes a slightly different
form. Assume GHj;j is the (i,7)-th element of the matrix
GH. Then, for a real valued even function p, the MF
problem is restated as

argmin D;i — GH;; 17
g ;p( j ) (17)

The formulation r;; = D;; — GH;; has also been used in the
literature. r;; is known as the residual of the fit. Clearly,
if p(0) = 0, the above minimization has a lower bound of 0,
when D = GH. The least square formulation corresponds
to p(z) = x2/2.

5.1 Robust approximation using M-estimators

In many real world scenarios, the observed matrix D is
prone to erroneous values. In addition to some small noise,
some values may be out of range, or unexpectedly different
from the rest of the observations. Such values are typically
called outliers; note that we are assuming outliers at a cell
level, meaning individual observations D;; might be faulty,
with completely arbitrary values and random distribution
of cells. Least squares estimates have been shown to be
highly error prone to outliers [11]: even 1-2 erroneous values
can completely disrupt the approximation. Fig. 1 shows the
effect of one outlier on a linear least square estimator. A lot
of research has been done in the last 35 years on the topic
of robust regression. The theory suggests that minimizing
the squared residual is not stable: instead a function of the
residual should be minimized. This is done by the use of



M-estimators which use bounded real valued functions p

argmin > olris)

ij

(18)

where 0 representing the model fitting parameters. Let us
assume that p is a differentiable function, and its derivative
is represented by 1. The minimization of the above function
w.r.t. the model parameters # occurs when the derivative of
the above equation is zero, i.e.

Ori
2ol =0,

¥(z) is called the influence function of the M-estimator p
and models the influence of a residual on the model fitting.
It is postulated that robustness requires a bounded influence
function. Clearly, ordinary least squares, which has an
unbounded influence function (¢¥rs(x) = ) is non-robust
following this criteria. To further simplify, let us define a
weight function w(z) = ¢(x)/z. Then Eq. 19 becomes:

(97‘1' _
Zw(ri)ri% =0,

7

(19)

(20)

which is exactly the same condition required for solving the
following iterative re-weighted least square problem:

. k—1y 2
argmin w(r; i 21
gain 3 w(rt™") (21)

The final issue remaining is the choice of an M-estimator:
various M-estimators have been described in literature,
with Huber, Andrew and Tukey estimators being more
popular. Huber’s M-estimator [11] is recommended for
general purposes and is characterized by the following weight

function:
<k 1
w(r) = { S

r>k (22)

7]

In Eq. (22), k is an appropriately chosen constant. For
our application, we choose k = 1.345, a value reported to
work well [11] for normally distributed data with std. dev.
o = 1°. The influence function of the Huber M-estimator
is bounded by |k|. The Huber weight function also has
distinct computation advantages over other M-estimators;
its application results in a dampened effect of large errors,
providing more robustness. In case of spam meant to cause
large deviations in one item’s predicted value, we expect
robust regression to discourage large shifts and provide a
moderate estimate.

5.2 Robust Matrix Factorization

Robust regression problems have been studied in a linear
setting where observables Y and inputs X are known and
Y is assumed to be noisy. Previous work shows that Matrix
fitting problems can be performed in a similar manner using
an Alternating fitting scheme. Assume we want to find
the rank over factors Gi,H; as defined in Eq. 17, with
the Huber M-estimator; higher rank estimates can be easily
computed in a similar manner to SVD(see Sec. 3.1). For
a rank 1 solution where G, H are both vectors, the broad
outline is as follows: first, we initialize G1, Hi. Then we fix
G, and minimize the reweighed least square problem:

argminZw(Dij — GrHy) - (Dij — GrHy)? (23)
me %

9Standard deviation in our dataset is 1.118 (~ 1)
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This can be achieved by a fixed rate gradient decent
algorithm, where updates are performed as follows:

Gf“ = Gf +n~rfj w(rfj) -H; ,VD;; >0 (24)

Note that we use the function r;j to denote the residual at
D; ;. After a few iterations, G converges to a minimum.
At this point, we switch G; and H;, and minimize for
G1. The above scheme is known as [teratively Re-weighted
Least Squares and was proven to converge to the rank-
1 least squares estimate of the matrix [5]. For higher
rank matrices, the above routine is repeated for the matrix
D* = D — G*H*,k = 1,...,d, to get a k-rank estimate.
Algorithm 1 summarizes the above procedure.

Algorithm 1 Rank-1l-estimate (Dyxn)
1: Initialize G°, H?, k — 1.
2: Define r;; = Dyj — (GFHF ).
3: Solve for argminZw(”r‘ij)(mj)2
Gk —
ij
4: Solve for argmin Z w(?"ij)(?“ij)2
HEk

ij

5: k—k+1

6: Iterate steps 2, 3 and 4 till convergence.
7. G1=GF H, =H"

Output: Matrices G1,H;

Algorithm 2 Rank-K-estimate (Dypxm, K)
: Initialize G < Opnxk, H < Ogxm, k — 1.
: Define D¥_,, =D
while k£ < K do
g, h — Rank-1-estimate(DF,,,)
G(:,k) —g, H(k,:) < h
Dlzj'nlz — DI:em - G(:7 k)H(k7 )
k—k+1
end while

PP T Wi

Output: Matrices G, H , Residual error= ||DF,,, ||

Related Work

Robust statistics have been applied previously to SVD [15]
using L-estimators. This approach uses Alternative least
squares with a L; minimization. RANSAC based methods
have also been developed for SVD [14]. There is plenty of
work in the application of robust statistics to regression [10,
5] and least square estimates. However, all the above
approaches for SVD have been designed with full matrices
in mind. Moreover, the objective in the work above to
deal with numerically large outliers. In our domain, the
erroneous values are still in the permissible range; however
their effect to cause large deviations which we want to guard
against. The use of M-estimators for Matrix factorization
is novel to the best of our knowledge; the RMF approach
outline above is also meant to work with large and sparse
matrices.

6. HYPOTHESIS & EXPERIMENTS

The aim of our work is to test whether robust statistical
methods can be used to robustify collaborative filtering.
The RMF method outlined in Sec. 5 should withstand
profile injection attacks in order to be useful. To test this



hypothesis, we apply RMF to CF data and compare the
performance with the prediction accuracy after insertion of
attack profiles. To insert attack profiles, we use the average
attack model [19] and generate a certain percentage of
profiles. These profiles collate to attack a single item, which
is decided earlier. To choose items to attack, we use the
following filter: an item which has not been voted by more
than 5% of the user propulation and has an average vote of
less than 3 (since our data set has votes between 1-5). We
then vary the number of profiles inserted and the number of
items voted by the spam user (filler size). All measurements
of error are made on 10% of the original data which has not
been used for training/prediction; this is called the test set.
This methodology is standard and been used to measure
the effectiveness of spam attacks previously [19, 18, 17, 16].
We apply the same procedure to PLSA, SVD, and k-NN for
comparison.

In addition, we try a simple heuristic where we remove
some of the user votes. Since extreme votes are the ones
responsible for maximum deviation in case of attacks, we
remove 10% of the highest and lowest votes of each person.
We expect this heuristic to remove a large fraction of the
votes on an attacked item from spam profiles, leading to a
reduced prediction shift. Obviously, we expect the overall
prediction accuracy to decrease for CF methods: however,
it is possible that better methods can generalize well even
from lesser data and not lose accuracy significantly.

6.1 Experimental Setup

To evaluate the performance of our proposed algorithms
algorithm, we use the 1 million Movielens dataset which con-
sists of 1,000,209 votes by 6040 users over 3952 movies and
has been used previously for evaluating shilling detection.
To this data, shilling profiles are added which all target the
same item which is selected at random. shilling profiles are
generated using the well studied models of Average, Random
attacks, as well as Gaussian and uniform noise.Since Average
attacks tend to be the strongest, we present results only
for them We use the generative models explained in [2] to
generate these shilling profiles. A random 10% votes are
removed from the dataset to create the test set; the training
set then contains 900,209 votes to which spam votes are
added. We add attack profiles with filler sizes of 3%, 5%,
7%, 10%, and 25%: the number of attack profiles ranges
from 1% to 10%. Since adding a user profiles has a high
human cost, we find addition of more profiles improbable.

6.2 Metrics Used

The task of evaluating predictions in collaborative filtering
is easily described as the measurement of the deviation
from observed values. Given that the user database can
be compactly represented as a Matrix X, with a user w;
forming a row with m items, the objective is to predict
missing values in this matrix. Since only a small percentage
of the matrix is observed, a portion of the observed data
is artificially removed, and predicted using the remaining
values. To measure the success of the prediction task,
metrics which capture deviation from actual values are used.
These include the mean and root mean error. An additional
metric called the ranking score rates the ranking generated
by the predicted user votes.

1. Mean Average Error = %|pv — ay|, where p, is the
predicted vote and a, is the actual vote. The average
is taken only over known values (assume the active
user has provided m votes).

T
Popular votes (baseline)
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Figure 2: MAE of various CF algorithms compared to RMF
measured over the testset: Attack profiles are inserted
into the data and MAE is measured over the same
testset. Interestingly, insertion of Gaussian spam does
not have a significant effect on the overall MAE

2. Root Mean Average Error = ,/%|pv — ay|?, where p,
is the predicted vote and a, is the actual vote. The
average is taken only over known values (assume the
active user has provided m votes). This metric is
useful in finding out the ability of a CF algorithm to
generalize and highlights larger errors.

3. MAFE on attacked item To measure the effect of the
attack on prediction stability, we compute the mean
average error of predicted votes of the attacked item
in the test set. This is usually a small number of
votes (say 40-100), and indicates the real shift in
prediction. We prefer this over prediction shift, as it is
difficult to compare multiple methods using prediction
shift: a common baseline cannot be established, as
the base performance of every method (before attack)
is different. We measure the MAE after attack over
multiple runs and present average results.

7. EXPERIMENTAL RESULTS

Our experiments show that the effect of targeted spam
on the performance of various CF algorithms ranges from
moderate to strong. The most robust algorithm turns
out to be Webb’s SVD, followed by RMF and PLSA (see
Fig. 3 & 4). The k-NN is easily influenced even when
we set the neighborhood size to be 5% of the entire user
population (300 neighbors). This is due to two reasons:
Spam users generated using the average attack can penetrate
user neighborhoods very effectively; secondly, the attacked
items chosen by us are voted on by very few users (<
5%), therefore the votes of the spam users become highly
authoritative.  SVD on the other hand does not get
influenced so easily since the factors representing a user
and an item are learnt from the overall pattern. Since a
significant portion of the user community seems to have a
below-average opinion of the attacked item, the effect of
spam is lesser than for k-NN. [16] discusses the impact of
spam on PLSA and concludes that the stability of PLSA
against spam is due to the soft-clustering nature. This
applies to SVD as well since it is similar in nature to
PLSA. The use of various CF specific optimizations such
as clipping leads to a better fitting model. At large filer
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Figure 3: MAE of various CF algorithms on votes in the test set on the attack item a) with filler size=3%, b) with filler size=5%

sizes, k-NN appears to be more stable since the randomness
in attack profiles lead to lower correlation; hence the effect
of spammers is reduced. This trend has also been noted by
previous research [19].

Our proposed Robust Matrix factorization algorithm also

performs well in the face of moderate spam. Clearly, the
effect of spam is low at small attack sizes, as the majority
opinion is given more importance. However, once the
number of votes by spammers are more than actual users,
RMF starts treating the spammer’s view as the majority
opinion. The numbers also show that RMF is more tolerant
to spam and model deviations than SVD and pLSA: the
prediction accuracy of RMF is higher than any other method
(see Fig. 2); this trend continues even in the face of spam
attacks. Clearly, using robustness offers protection against
minor departures from model assumptions.
Removing votes from data: An interesting trend appears
when we remove 20% of the extreme votes from each user!®:
all collaborative filtering algorithms test show increased
stability w.r.t. prediction shift. Table 1. shows that
the accuracy of all methods over the test set votes of the
attached item is increased by more than 10%. This clearly
comes with a loss in the overall accuracy; however SVD and
RMF do not suffer significant losses. The MAE of the SVD,
RMF and PLSA remains close to the value without any vote
removal, while gaining significant accuracy on the attached
item. Particulatly notable is the performance of RMF which
gains more than 25% in MAE, outlining how effective it is
in learning trends from less and noisy data.

8. CONCLUSIONS

This paper investigates the effectiveness of robust statis-
tics in protecting against collaborative filtering spam. We
present a new algorithm for Robust Matrix Factorization
similar in spirit to SVD which is more stable to noisy
data. Experimental results show that application of M-
estimators does not add significant stability; modified SVD
algorithms outperform RMF in robustness. However, RMF
adds significant stability as compared to other CF methods
like PLSA and k-NN. The major positive outcome of this
work is that RMF outperforms all other algorithms based

100nly users with more than 15 votes in the training test are
selected for vote removal.
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All data 30% data
MAE MAE on At- | MAE MAE on At-

tacked item tacked item
k-NN (1%) 0.7965 1.4179 0.8065(-1.2%) | 1.1014 (22.3%)
svbaw) | 0.6731 0.6669 0.7018(-4.2%) | 0.5471(17.9%)
RMF (1%) 0.6677 0.6721 0.6982(-4.5%) | 0.5836(13.2%)
prsa o) | 0.6938 1.1717 0.7246(.4.4%) | 0.6840(41.6%)
o~ %) | 0.7992 1.5268 0.8074(-1.0%) | 1.2178(20.2%)
SVD (3%) 0.6733 0.7625 0.7013(-4.2%) | 0.6726(11.8%)
RMF (3%) 0.6681 0.8806 0.6987(-4.6%) | 0.6525(25.9%)
pLsa %) | 0.6943 1.1683 0.7295(-5.1%) | 0.8455(27.6%)
N~ o | 0.8088 1.6179 0.8067(+0.2%) | 1.5198(5.9%)
svp %) | 0.6737 1.0882 0.7004(-3.9%) | 0.9338(14.2%)
RMF (5%) 0.6684 1.2514 0.6980(-4.4%) | 0.8759(30.0%)
pLsA (5%) | 0.6946 1.4995 0.7271(-4.7%) | 1.1900(20.6%)
o (10%) | 0.8076 7.8051 0.8039(10.4%) | 1.493(17.2%)
SVD (10%) 0.6736 1.2659 0.6998(-3.9%) | 1.2811(-1.2%)
e (10%) | 0.6691 1.5549 0.6985(-4.4%) | 1.2310(20.8%)
pLsA (10%) | 0.6969 1.2589 0.7292(.4.7%) 1.6346(-29.8%)

Table 1: MAE of various CF algorithms on votes in the test set

on the attack item, with filler size=7%. 20% of extreme
votes has been removed for all users. We also report
the MAE on the observed votes on the attacked item
in the test set (~ 40 — 80 votes)

on latent semantics (PLSA, SVD) in our dataset. However,
the addition of robustness comes with a price: the RMF
algorithm requires 4 times as much training time at SVD.
This is a result of our training procedure which uses a
fixed rate gradient descent approach; faster training can be
achieved by using methods to accelerate gradient descent.

In addition, we have explored the effectiveness of vote
sampling on stability and performance; removal of 20% of
extreme votes leads to a significant increase in robustness
for every method. Whiel some methods suffer from a
significant loss in accuracy due to lesser data, SVD and
RMF can generalize well even from reduced data and provide
accurate prediction. Future work involves developing faster
training procedures for RMF and developing algorithms
which provide higher robustness against spam.
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