skip to main content
10.1145/1328491.1328546acmconferencesArticle/Chapter ViewAbstractPublication Pagesi-createConference Proceedingsconference-collections
research-article

Functional electrical stimulation in rehabilitation engineering: a survey

Published: 23 April 2007 Publication History

Abstract

Functional electrical stimulation (FES) is used widely in rehabilitation to restore motor functions for paralyzed patients. This paper makes a comprehensive review on current situation of FES. The content includes stimulation interface, applications, FES control, challenges and prospect of FES. Especially, combination FES with electromyography (EMG) and brain computer interface (BCI) is surveyed.

References

[1]
J. J. Abbas and R. J. Triolo, "Experimental evaluation of an adaptive feedforward controller for use in functional neuromuscular stimulation systems," IEEE Trans. Rehab. Eng., vol.5, no.1, Mar. 1997.
[2]
J. J. Ababas and H. J. Chizeck "Neural networks for control of functional neuromuscular stimulation systems: computer simulation study," IEEE Trans. Biomed. Eng., vol.4, no.11, pp.1117--1127, 1995.
[3]
M. M. Adamczyk and P. E. Crago, "Simulated feedforward neural network coordination of hand grasp and wrist angle in a neuroprosthesis," IEEE Trans. Rehab. Eng., vol.8, no.3, pp.297--304, Sep. 2000.
[4]
F. C. Anderson, A dynamic optimization solution for a complete cycle of normal gait, PhD thesis. Univ. Tex., Auatin. 1999.
[5]
N. Birbaumer, "Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control," Psychophysiology, vol.43, pp.517--532, 2006.
[6]
P. Boord, A. Barriskill, A. Craig, and H. Nguyen, "Brain-computer interface-FES integration: Towards a hands-free neuroprosthesis command system," Neuromodulation, vol.7, no.4, pp.267--276, 2004.
[7]
R. Brissot, P. Gallien, M. P. L. Bot, A. Beaubras, D. Laisne, J. Beillot, and J. Dassonville, "Clinical experience with functional electrical stimulation-assisted gait with parastep in spinal cord-injured patients," Spine, vol.25, pp.501--508, 2000.
[8]
P. Cesari, T. Shiratori, P. Olivato, and M. Duarte, "Analysis of kinematically redundant reaching movement using the equilibrium-point hypothesis," Biol. Cybern. vol.84, pp.217--226, 2001.
[9]
H. J. Chizeck, "Adaptive and nonlinear control methods for neural prostheses," in Neural Prostheses: Replacing Motor Function After Disease or Disability, Oxford University Press, pp.298--328, 1992.
[10]
G. C. Chang, J. J. Luh, G. D. Liao, J. S. Lai, C. K. Cheng, B. l. Kuo and T. S. Kuo, "A neuro-control system for the knee joint position control with quadriceps stimulation," IEEE Trans. Rehab. Eng., vol.5, no.1, pp.2--11, Mar. 1997.
[11]
J. J. Chen, N. Y. Yu, D. G. Huang, B. T. Ann, and G. C. Chang, "Applying fuzzy logic to control cycling movement induced by functional electrical stimulation," IEEE Trans. Rehab. Eng., vol.5, no.2, pp.158--168, Jun. 1997.
[12]
W. Craelius, "The bionic man: Restoring mobility," Science, vol.295, pp.1018--1021, 2002.
[13]
P. E. Crago, R. J. Nakai, and H. J. Chizeck, "Feedback regulation of hand grasp opening and contact force during stimulation of paralyzed muscle," IEEE Trans. Biomed. Eng., vol.38, pp.17--28, 1991.
[14]
P. R. Davidson, R. D. Jones, J. H. Andreae, and H. S. Sirisena, "Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach," IEEE Trans. Rehab. Eng., vol.49, no.11, pp.2--11, Nov. 2002.
[15]
R. Davoodi and B. J. Andrews, "Computer simulation of FES standing up in paraplegia: A self-adaptive fuzzy controller with reinforcement learning," IEEE Trans. Rehab. Eng., vol.6, no.2, pp.151--161, Jun. 1998.
[16]
J. P. Dewald, J. D. Given, and W. Z. Rymer, "Long-lasting reductions of spasticity induced by skin electrical stimulation," IEEE Trans. Rehab. Eng., vol.4, pp.231--242, 1996.
[17]
H. Dou, K. K. Tan, T. H. Lee, and Z. Zhou, "Iterative learning feedback control of human limbs via functional electrical stimulation," Control Engineering Practice, vol.7, pp.315--325, 1999.
[18]
W. K. Durfee, "From idea to product," in Biomechanics and Neural Control of Posture and Movement, Springer press, pp.563--570, 2002.
[19]
W. K. Durfee and J. T. Dennerlein, "EMG as a feedback signal in surface FES application: Issues and preliminary results," Proc. of 11th IEEE Intern. Conf. EMBS, 1989.
[20]
M. Ferrarin, F. Palazzo, R. Riener, and J. Quintern, "Model-based control of FES-induced single joint movements," IEEE Trans. Neural System and Rehab. Eng., vol.9, pp.245--257, 2001.
[21]
C. Frigo, M. Ferrarin, W. Frasson, E. Pavan, and R. Thorsen, "EMG signals detection and processing for on-line control of functional electrical stimulation," J. Electromyogr. Kinesiol., vol.10, no.5, pp.351--360, 2000.
[22]
A. Franek, B. Turczynski, and J. Opara "Treatment of spinal spasticity by electrical stimulation," J. Biomed. Eng., vol.10, pp.266--270, 1988.
[23]
H. M. Franken, P. H. Veltink, G. Baardman, R. A. Redmeyer, and H. B. K. Boom, "Cycle-to-cycle control of swing phase of paraplegic gait induced by surface electrical stimulation," Med. Biol. Eng. Comput., vol.33, no.3, pp.440--451, 1995.
[24]
R. Futami, K. Seki, T. Kawanishi, T. Sugiyama, I. Cikajlo and Y. Handa, "Application of local EMG-Driven FES to incompletely paralyzed lower extremities," 10th Annual Conference of the International FES Society, Montreal, Canada, July, 2005.
[25]
D. M. Gillard, T. Cameron, A. Prochazka, and M. J. A. Gauthier, "Tremor suppression using functional electrical stimulation: A comparision between digital and analog controllers," IEEE Trans. Rehab. Eng., vol.7, no.3, pp.385--388, 1999.
[26]
J. P. Giuffrida and P. E. Crago, "Reciprocal EMG control of elbow extension by FES," IEEE Trans. Neural Syst. Rehab. Eng., vol.9, no.4, pp.338--345, 2001.
[27]
D. Graupe, and K. H. Kohn, "A critical review of EMG controlled electrical stimulation in paraplegics," CRC Crit. Rev. Biomed. Eng., vol.15, no.3, pp.187--210, 1988.
[28]
D. Graupe and H. Kordylewski, "Artificial neural network control of FES in paraplegics for patient responsive ambulation," IEEE Trans. Biomed. Eng., vol.42, no.7, pp.699--707, Jul. 1995.
[29]
H. Hatze, "Neuromusculoskeletal control systems modeling - A critical survey of recent developments," IEEE Trans. Automat. Control, vol. AC-25, pp.375--385, 1980.
[30]
M. S. Hatwell, B. J. Oderkerk, C. A. Sacher, and G. F. Inbar, "The development of a model reference adaptive controller to control the knee joint of paraplegics," IEEE Trans. Automat. Contr. Eng., vol.36, no.6, pp.683--691, Jun. 1991.
[31]
R. L. Hart, K. L. Kilgore and P. H. Peckham, "A comparison between control methods for implanted FES Hand-Grasp systems," IEEE Trans. Rehab. Eng., vol. 6, no. 2, pp. 201--208, Jun. 1998.
[32]
J. He, M. G. Maltenfort, Q. Wang and T. M. Hamm, "Learning from biological system: Modeling neural control," IEEE Control Systems Magazine, vol.21, no.4, pp.55--69, Aug. 2001.
[33]
J. He, W. S. Levine, and G. E. Loeb, "Feedback gains for correcting small perturbations to standing posture," IEEE Trans. Automatic Control, pp.322--332, vol.36, no.3, 1991.
[34]
A. E. Hines, P. E. Crago, and C. Billian, "Functional electrical stimulation for the reduction of spasticity in the hemiplegic hand. Biomed. Sci. Instrum., vol.29, pp.259--266, 1993.
[35]
K. J. Hunt, R. Jaime, and H. Gollee, "Robust control of electrically-stimulated muscle using polynomial H-infinity design," Control Engineering Practice, vol.9, no.3, pp.313--328, 2001.
[36]
K. J. Hunt, B. Stone, N. Negard, T. Schauer, M. H. Fraser, A. J. Cathcart, C. Ferrario, S. A. Ward, and S. Grant, "Control strategies for integration of electric motor assist and functional electrical stimulation in paraplegic cycling: Utility for exercise testing and mobile cycling," IEEE Trans. Neural Syst. and Rehab. Eng., vol.12, no.1, pp.89--101, 2004.
[37]
K. J. Hunt, M. Munih, N. Donaldson, and F. M. D. Barr, "Optimal control of ankle joint moment: toward unsupported standing in paraplegia," IEEE Trans. Automat. Control, vol.43, pp.819--832, 1998.
[38]
J. C. Jarvis and N. J. M. Rijkhoff, "Functional electrical stimulation for control of internal organ function," Neuromodulation, vol.4, no.4, pp.155--164, 2001.
[39]
S. Jezernik, R. G. V. Wassink, and T. Keller, "Sliding mode closed-loop control of FES: Controlling the shank movement," IEEE Trans. Biomed. Eng., vol.51, no.2, pp.263--272, 2004.
[40]
S. Jonic, T. Jankovic, V. Gajic, and D. Popovic, "Three machine learning techniques for automatic determination of rules to control locomotion," IEEE Trans. Biomed. Eng., vol.46, pp.300--310, 1999.
[41]
P. R. Kennedy, R. A. E. Bakay, M. M. Moore, K. Adams, and J. Goldwaithe, "Direct control of a computer from the human central nervous system," IEEE Trans. Rehab. Eng., vol.8, pp.198--202, 2000.
[42]
T. Keller, Surface Functional Electrical Stimulation Neuroprostheses for Grasping, PhD thesis, Swiss Federal Institue of Technology, 2001.
[43]
T. Keller, M. R. Popovic, and I. P. Muller, "Transcutaneous functional electrical stimulator 'Compex Motion'," Artif. Organs., vol.37, pp.219--223, 2002.
[44]
A. Keil, T. Elbert, and T. Elbert, "Relation of accelerometer and EMG recordings for the measurement of upper extremity movement," J. Psychophysiology, vol. 13, no.2, pp.77--82, 1999.
[45]
G. Khang and F. E. Zajac, "Paraplegic standing controlled by functional neuromuscular stimulation: I, II," IEEE Trans. Biomed. Eng., vol.36, pp.873--884, 1989.
[46]
K. L. Kilgore and R. F. Kirsch, "Upper and lower extremity motor neuroprostheses," in Neuroprosthetics: Theory and Practice, pp.845--877, 2004.
[47]
A. Kostove, B. J. Andrews, D. B. Popovic, R. B. Stein, and W. W. Armstrong, "Machine learning in control of functional electrical stimulation systems for locomotion," IEEE Trans. Biomed. Eng., vol.42, no.6, pp.541--551, Jun. 1995.
[48]
A. Kralj and T. Bajd, Functional Electrical Stimulation: Standing and Walking after Spinal Cord Injury, CRC Press, Baca Raton, FL, USA, 1989.
[49]
A. Kralj, T. Bajad, M. Munih, and R. Turk, "FES gait restoration and balance control in spinal cord injured patients," Progress Brain Res., vol.97, pp.387--396, 1993.
[50]
N. Lan, "Stability analysis for posture control in a two-joint limb system," IEEE Trans. Rehab. Eng., vol.10, pp.249--259, 2002.
[51]
N. Lan, P. E. Crago, and H. J. Chizeck, "Control of end-point forces of a multijoint limb by functional neuromuscular stimulation," IEEE Trans. Biomed. Eng., vol.38, no.10, pp.953--965, Oct. 1991
[52]
N. Lan, "Analysis of an optimal control model of multi-joint arm movements," Biol. Cybern., vol.76, pp.107--117, 1997.
[53]
T. R. Lauer, P. H. Peckham, and K. L. Kilgore, "EEG-based control of a hand grasp neuroprosthesis," Neuroreport, vol.10, pp.1767--1771, Jun. 1999.
[54]
L. Liu, A. B. Wright, and G. T. Anderson, "Trajectory planning and control for a human-like robot leg with coupled neural-oscillators," Proc. of Mechatronics, 2000.
[55]
W. T. Liberson, H. J. Holmquest, D. Scott, and M. Dow, "Functional electrotherapy in stimulation of the peroneal nerve synchronized with the swing phase of gait in hemiparetic patients," Arch. Phys. Med. Rehabil., vol.42, pp.101--105, 1961.
[56]
X. F. Li and S. J. Xiao, "Model predictive control of human elbow joint movement," Proc. Int. Conf. IEEE EMBS, vol.20, no.5, pp.2366--2368, 1998.
[57]
G. E. Loeb and J. H. Schulman, "The transfer of technology from the laboratory to the real world," in Neural Prostheses: Replacing Motor Function After Disease or Disability, Oxford University Press, pp.330--341, 1992.
[58]
G. M. Lyons, T. Sinkj, J. H. Burridge, and D. J. Wilcox, "A review of portable FES-based neural orthoses for the correction of drop foot," IEEE Trans. Neural Syst. Rehab. Eng., vol.10, no.4, pp.260--279, 2002.
[59]
Z. Matjacic and T. Bajd, "Arm-free paraplegic standing---Part I: control model synthesis and simulation," IEEE Trans. Rehab. Eng., vol.6, no.2, pp.125--138, Jun. 1998.
[60]
J. Minzly, J. Mizrahi, N. Hakim, and A. Liberson, "A stimulus artifact suppressor for EMG recording during FES by a constant current stimulator," Med. Biol. Eng. & Comp., vol.31, pp.72--75, 1993.
[61]
J. H. Moe and H. W. Post, "Functional electrical stimulation for ambulation in hemiplegia," Lancet, vol.82, pp.285--288, 1962.
[62]
Y. Muraoka, "Development of an EMG recording device from stimulation electrodes for functional electrical stimulation," Front. Biol. Med. Eng., 11(4):323--33, 2002.
[63]
R. H. Nathan, "Control strategies in FNS systems for the upper extremities," Cri. Rev. Biomed. Eng., vol.21, pp.485--568, 1993.
[64]
M. A. L. Nicolelis, "Actions from thoughts," Nature, vol.409, pp.403--407, Jan. 2001.
[65]
M. A. L. Nicolelis, "Brain-machine interfaces to restore motore function and probe neural circuits," Nature Reviews, Neuroscience, vol.4, pp.417--422, 2003.
[66]
M. G. Pandy, "Computer modelling and simulation of human movement," Annu. Rev. Biomed. Eng., vol.3, pp.245--273, 2000.
[67]
W. Peasgood, T. Whitlock, A. Bateman, M. E. Fry, R. S. Jones and A. Davis-Smith, "EMG-controlled closed loop electrical stimulation using a digital signal processor," Electronics Letters, vol.36, pp.1832--1833, 2000.
[68]
J. S. Petrofsky, "New algorithm to control a cycle ergometer using electrical stimulation," Med. Biol. Eng. Comput., vol.41, pp.18--27, 2003.
[69]
P. H. Peckham, E. B. Marsolais, and J. T. Mortimer, "Restoration of a key grip and release in the C6 tetraplegic patient through functional electrical stimulation," J. Hand Surg., vol.5, no.5, pp.462--469, 1980.
[70]
G. Pfurtschellera, C. Gugera, G. Mullerb, G. Krausza, and C. Neuperb "Brain oscillations control hand orthosis in a tetraplegic," Neuroscience Letters, vol.292, pp.211--214, 2000.
[71]
G. Pfurtscheller, G. R. Muller-Putz, J. Pfurtscheller, and R. Rupp, "EEG-Based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient," EURASIP Journal on Applied Signal Processing, vol.19, pp.3152--3155, 2005.
[72]
D. Popovic, and T. Sinkjer, Control of Movement for the Physically Disabled, in press, Springer, 2000.
[73]
M. R. Popovic, T. Keller, Ion P. I. Pappas, V. Dietz, and M. Morari, "Surface-stimulation technology for grasping and walking neuroprostheses," IEEE Eng. Med. Biol., vol.20, pp.82--93, 2001.
[74]
D. Popovic, M. Radulovic, L. Schwirtlich, and N. Jaukovic, "Automatic vs. hand-controlled walking of paraplegics," Med. Eng. Phys., vol.25, pp.63--73, 2003.
[75]
D. Popovic, R. B. Stein, M. N. Oguztoreli, M. Lebiedowska, and S. Jonic, "Optimal control of walking with functional electrical stimulation: A computer simulation study," IEEE Trans. Rehab. Eng., vol.7, pp.69--79, Mar. 1999.
[76]
M. B. Popovic and D. Popovic, "Cloning biological synergies improves control of elbow neuroprostheses," IEEE Eng. Med. Biol., vol.20, pp.74--81, 2001.
[77]
F. Previdi and E. Carpanzano, "Design of a gain scheduling controller for knee-joint angle control by using functional electrical stimulation," IEEE Trans. Contr. Syst. Tech., vol.11, no.3, pp.310--323, 2003.
[78]
F. Previdi, T. Schauer, S. M. Savaresi, and K. J. Hunt, "Data-driven control design for neuroprostheses: A virtual reference feedback tuning (VRFT) approach," IEEE Trans. Contr. Syst. Tech., vol.12, pp.176--182, 2004.
[79]
A. Prochazka, J. Elek, and M. Javidan, "Attenuation of pathological tremors by functional electrical stimulation 1: method," Ann. Biomed. Eng., vol. 20, pp. 205--224, 1992.
[80]
A. Prochazka, "Comparision of natural and artificial control of movement," IEEE Trans. Biomed. Eng., vol.1, no.1, pp.7--17, 1993.
[81]
A. Prochazka, M. Gauthier, M. Wieler, and Z. Kanwell, "The bionic gloves: An electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia," Arch. Physical Med. and Rehab., vol.78, pp.1--7, 1997.
[82]
J. Riess and J. J. Abbas, "Adaptive control of cyclic movement as muscle fatigue using functional neuromuscular stimulation," IEEE Trans. Neural Syst. and Rehab. Eng., vol.9, no.3, pp.326--330, 2001.
[83]
R. Riener and T. Fuhr "Patient-driven control of FES-supported standing up: A simulation study," IEEE Trans. Rehab. Eng., vol.6, no.2, pp.113--124, 1998.
[84]
W. L. C. Rutten, "Selective electrical interfaces with the nervous system," Annu. Rev. Biomed. Eng., vol.4, pp.407--452, 2002.
[85]
S. Saxena, S. Nikolic, D. Popovic, "An EMG controlled grasping system for tetraplegics," J. Rehab. Res. Dev., vol.32, pp.17--24, 1995.
[86]
T. Schauer, R. C. Salbert, N-O. Negard, and J. Raisch, "Detection and filtering of EMG for assessing voluntary muscle activity during FES," 9th Annual Conference of the International FES Society, Bournemouth, UK, Sep. 2004.
[87]
S. Sennels, F. Biering-Sorensen, O. T. Andersen, and S. D. Hansen, "Functional neuromuscular stimulation controlled by surface electromyographic signals produced by volitional activation of the same muscle: Adaptive removal of the muscle response from the recorded EMG-signal" IEEE Trans. Rehab. Eng., vol.5, pp.195--207, 1997.
[88]
T. Sinkjaer, M. Haugland, A. Inmann, M. Hansen, and K. D. Nielsen, "Biopotentials as command and feedback signals in functional electrical stimulation systems," Medical Engineering & Physics, vol.25, pp.29--40, 2003.
[89]
M. Solomonow, E. Anguilar, E. Reisin, R. V. Baratta, R. Best, T. Coetzee, and R. D'Ambroisa, "Reciprocating gait orthosis powered with electrical muscle stimulation, I: Performance evaluation of 70 paraplegic patients," Orthopedics, vol.20, pp.315--324, 1997.
[90]
E. C. Sites and J. J. Abbas, "Sensitivity and versatility of an adaptive system for controlling cyclic movements using functional neuromuscular stimulation," IEEE Trans. Biomed. Eng., vol.47, no.9, pp.1287--1292, 2000.
[91]
A. Stefanovska, L. Vodovnik, N. Gros, S. Rebersek, and R. A. Janezic, "FES and spasticity," IEEE Trans. Biomed. Eng., vol.36. no.7, 1989.
[92]
A. Stefanovska, S. Rebersek, T. Bajd, and L. Vodovnik, "Effects of electrical stimulation on spasticity," Crit. Rev. Phys. Med. Rehab. vol.3, pp.59--99, 1991.
[93]
G. Taga, "A model of the neuro-musculo-skeletal system for human locomotion I, II," Biol. Cybern., vol.73, pp.97--121, 1995.
[94]
K. Takahashi, N. Hoshimiya, H. Mastuki, and Y. Handa, "Externally powered implantable FES system," Jap. J. Med. Electro. and Bio. Eng., vol.37, pp.43--51, 1999.
[95]
R. Tomovic, D. Popovic, and R. B. Stein, "Nonanalytical methods for motor control," in press, World Science, Singapore, 1995.
[96]
F. Towhidkhah, R. E. Gander, and H. C. Wood, "Model predictive impedance control: A model for joint movement," J. Mot. Behav., vol.29, no.3, pp.209--222, 1997.
[97]
K. Y. Tong and M. H. Granat, "Gait control system for functional electrical stimulation using neural networks," Med. Biol. Eng. Comput., vol.37, no.1, pp.35--41, 1999.
[98]
L. Vodovnik, C. Long, J. B. Reswick, A. Lippay, and D. Starbuck, "Myoelectric control of paralyzed muscles," IEEE Trans. Biomed. Eng., vol.12, pp. 169--172, July/Oct. 1965.
[99]
J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan, "Brain-Computer Interface Technology: A Review of the First International Meeting," IEEE Trans. Rehab. Eng., vol.8, pp.164--173, 2000.
[100]
G. T. Yamaguchi and F. E. Zajac, "Restoring unassisted natural gait to paraplegics via functional neuromuscular stimulation: A computer simulation study," IEEE Trans. Biomed. Eng., vol.37, no.9, pp.886--902, Sep. 1990.
[101]
H. Yeom, Y. Park, and H. Yoon, "Gram-Schmidt M-wave canceller for the EMG controlled FES," IEICE Transactions on Information and Systems, vol. E88-D, No. 9, pp.2213--2217, 2005.
[102]
K. Yoshida and R. Riso, "Peripheral nerve recording electrodes and techniques," in Neuroprosthetics: Theory and Practice, in press, World Science, pp.683--744, 2004.
[103]
K. Yoshida and K. Horch, "Closed-loop control of ankle position using muscle afferent feedback with functional neuromuscular stimulation," IEEE Trans. Biomed. Eng., Vol.43, no.2, pp.167--176, 1996.
[104]
W. Yu, H. Yamaguchi, H. Yokoi, M. Maruishi, Y. Mano, and Y. Kakazu, "An adaptive FES switching system for hemiplegics," International Journal of Smart Engineering System Design, vol.5, no. 4, pp. 299--311, 2003.
[105]
D. G. Zhang, and K. Y. Zhu, "Modeling biological motor control for human locomotion with functional electrical stimulation," Biol. Cybern., accepted, 2006.

Cited By

View all
  • (2024)A new modular neuroprosthesis suitable for hybrid FES-robot applications and tailored assistanceJournal of NeuroEngineering and Rehabilitation10.1186/s12984-024-01450-621:1Online publication date: 4-Sep-2024
  • (2024)Prototype Of Transcutaneous Electrical Nerve Stimulator Based On Microcontroller2024 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)10.1109/ICCE-Taiwan62264.2024.10674250(437-438)Online publication date: 9-Jul-2024
  • (2024)Non-linear model predictive control based trajectory tracking of hand and wrist motion using functional electrical stimulationControl Engineering Practice10.1016/j.conengprac.2024.105895146(105895)Online publication date: May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
i-CREATe '07: Proceedings of the 1st international convention on Rehabilitation engineering & assistive technology: in conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting
April 2007
272 pages
ISBN:9781595938527
DOI:10.1145/1328491
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 April 2007

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. BCI
  2. EEG
  3. EMG
  4. FES control
  5. functional electrical stimulation
  6. stimulation interface

Qualifiers

  • Research-article

Conference

i-CREATe07
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)34
  • Downloads (Last 6 weeks)3
Reflects downloads up to 15 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A new modular neuroprosthesis suitable for hybrid FES-robot applications and tailored assistanceJournal of NeuroEngineering and Rehabilitation10.1186/s12984-024-01450-621:1Online publication date: 4-Sep-2024
  • (2024)Prototype Of Transcutaneous Electrical Nerve Stimulator Based On Microcontroller2024 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)10.1109/ICCE-Taiwan62264.2024.10674250(437-438)Online publication date: 9-Jul-2024
  • (2024)Non-linear model predictive control based trajectory tracking of hand and wrist motion using functional electrical stimulationControl Engineering Practice10.1016/j.conengprac.2024.105895146(105895)Online publication date: May-2024
  • (2024)FES Cycling System in Rehabilitation Engineering: A SurveyProceedings of the 13th International Conference on Computer Engineering and Networks10.1007/978-981-99-9239-3_52(532-541)Online publication date: 4-Jan-2024
  • (2023)A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recoveryFrontiers in Neurology10.3389/fneur.2023.127299214Online publication date: 8-Dec-2023
  • (2023)Boosting brain–computer interfaces with functional electrical stimulation: potential applications in people with locked-in syndromeJournal of NeuroEngineering and Rehabilitation10.1186/s12984-023-01272-y20:1Online publication date: 18-Nov-2023
  • (2023)Optimal Motor Point Search Using Mm-Order Electrode ArraysIEEE Access10.1109/ACCESS.2023.328542211(58970-58981)Online publication date: 2023
  • (2022)Earable Ω (OMEGA): A Novel Clenching Interface Using Ear Canal Sensing for Human Metacarpophalangeal Joint Control by Functional Electrical StimulationSensors10.3390/s2219741222:19(7412)Online publication date: 29-Sep-2022
  • (2020)Functional Electrical Stimulation Controlled by Motor Imagery Brain-Computer Interface for RehabilitationBrain Sciences10.3390/brainsci1008051210:8(512)Online publication date: 2-Aug-2020
  • (2019)Musculoskeletal Modeling of Elbow Joint under Functional Electrical Stimulation2019 International Conference on Advanced Systems and Emergent Technologies (IC_ASET)10.1109/ASET.2019.8871033(307-310)Online publication date: Mar-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media