skip to main content
10.1145/1329125.1329189acmotherconferencesArticle/Chapter ViewAbstractPublication PagesaamasConference Proceedingsconference-collections
research-article

Collaboration among a satellite swarm

Published:14 May 2007Publication History

ABSTRACT

The paper deals with on-board planning for a satellite swarm via communication and negotiation. We aim at defining individual behaviours that result in a global behaviour that meets the mission requirements. We will present the formalization of the problem, a communication protocol, a solving method based on reactive decision rules, and first results.

References

  1. ILOG inc. CPLEX. http://www.ilog.com/products/cplex.Google ScholarGoogle Scholar
  2. T. Balch and R. Arkin. Communication in reactive multiagent robotic systems. Autonomous Robots, pages 27--52, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. F. Bellifemine, A. Poggi, and G. Rimassa. JADE - a FIPA-compliant agent framework. In Proceedings of PAAM'99, pages 97--108, 1999.Google ScholarGoogle Scholar
  4. A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial Intelligence, Vol. 90:281--300, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. E. Bornschlegl, C. Guettier, G. L. Lann, and J.-C. Poncet. Constraint-based layered planning and distributed control for an autonomous spacecraft formation flying. In Proceedings of the 1st ESA Workshop on Space Autonomy, 2001.Google ScholarGoogle Scholar
  6. E. Bornschlegl, C. Guettier, and J.-C. Poncet. Automatic planning for autonomous spacecraft constellation. In Proceedings of the 2nd NASA Intl. Workshop on Planning and Scheduling for Space, 2000.Google ScholarGoogle Scholar
  7. R. Brooks. A robust layered control system for a mobile robot. MIT AI Lab Memo, Vol. 864, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Chopra and M. Singh. Nonmonotonic commitment machines. Lecture Notes in Computer Science: Advances in Agent Communication, Vol. 2922:183--200, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. Chopra and M. Singh. Contextualizing commitment protocols. In Proceedings of the 5th AAMAS, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. Clement and A. Barrett. Continual coordination through shared activites. In Proceedings of the 2nd AAMAS, pages 57--64, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Cox and E. Durfee. Efficient mechanisms for multiagent plan merging. In Proceedings of the 3rd AAMAS, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Curtis, M. Rilee, P. Clark, and G. Marr. Use of swarm intelligence in spacecraft constellations for the resource exploration of the asteroid belt. In Proceedings of the Third International Workshop on Satellite Constellations and Formation Flying, pages 24--26, 2003.Google ScholarGoogle Scholar
  13. S. Damiani, G. Verfaillie, and M.-C. Charmeau. An Earth watching satellite constellation: How to manage a team of watching agents with limited communications. In Proceedings of the 4th AAMAS, pages 455--462, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Das, P. Gonzales, R. Krikorian, and W. Truszkowski. Multi-agent planning and scheduling environment for enhanced spacecraft autonomy. In Proceedings of the 5th ISAIRAS, 1999.Google ScholarGoogle Scholar
  15. R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith, and R. Wahington. Incremental contingency planning. In Proceedings of ICAPS'03 Workshop on Planning under Uncertainty and Incomplete Information, pages 1--10, 2003.Google ScholarGoogle Scholar
  16. F. Dignum. Autonomous agents with norms. Artificial Intelligence and Law, Vol. 7:69--79, 1999.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. Durfee. Scaling up agent coordination strategies. IEEE Computer, Vol. 34(7):39--46, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. K. Erol, J. Hendler, and D. Nau. HTN planning: Complexity and expressivity. In Proceedings of the 12th AAAI, pages 1123--1128, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Escorial, I. F. Tourne, and F. J. Reina. Fuego: a dedicated constellation of small satellites to detect and monitor forest fires. Acta Astronautica, Vol.52(9--12):765--775, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  20. B. Gerkey and M. Matarić. A formal analysis and taxonomy of task allocation in multi-robot systems. Journal of Robotics Research, Vol. 23(9):939--954, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  21. C. Guettier and J.-C. Poncet. Multi-level planning for spacecraft autonomy. In Proceedings of the 6th ISAIRAS, pages 18--21, 2001.Google ScholarGoogle Scholar
  22. I. Gupta, A.-M. Kermarrec, and A. Ganesh. Efficient epidemic-style protocols for reliable and scalable multicast. In Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems, pages 180--189, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. G. Gutnik and G. Kaminka. Representing conversations for scalable overhearing. Journal of Artificial Intelligence Research, Vol. 25:349--387, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. K. Jenkins, K. Hopkinson, and K. Birman. A gossip protocol for subgroup multicast. In Proceedings of the 21st International Conference on Distributed Computing Systems Workshops, pages 25--30, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. N. Jennings, S. Parsons, P. Norriega, and C. Sierra. On augumentation-based negotiation. In Proceedings of the International Workshop on Multi-Agent Systems, pages 1--7, 1998.Google ScholarGoogle Scholar
  26. J.-L. Koning and M.-P. Huget. A semi-formal specification language dedicated to interaction protocols. Information Modeling and Knowledge Bases XII: Frontiers in Artificial Intelligence and Applications, pages 375--392, 2001.Google ScholarGoogle Scholar
  27. F. Legras and C. Tessier. LOTTO: group formation by overhearing in large teams. In Proceedings of 2nd AAMAS, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. McAllester, D. Rosenblitt, P. Norriega, and C. Sierra. Systematic nonlinear planning. In Proceedings of the 9th AAAI, pages 634--639, 1991.Google ScholarGoogle Scholar
  29. N. Meuleau and D. Smith. Optimal limited contingency planning. In Proceedings of the 19th AAAI, pages 417--426, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Modi and M. Veloso. Bumping strategies for the multiagent agreement problem. In Proceedings of the 4th AAMAS, pages 390--396, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. B. Mueller, D. M. Surka, and B. Udrea. Agent-based control of multiple satellite formation flying. In Proceedings of the 6th ISAIRAS, 2001.Google ScholarGoogle Scholar
  32. J. Odell, H. Parunak, and B. Bauer. Extending UML for agents. In Proceedings of the Agent-Oriented Information Systems Workshop at the 17th AAAI, 2000.Google ScholarGoogle Scholar
  33. B. Pittel. On spreading a rumor. SIAM Journal of Applied Mathematics, Vol. 47:213--223, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. B. Polle. Autonomy requirement and technologies for future constellation. Astrium Summary Report, 2002.Google ScholarGoogle Scholar
  35. T. Sandholm. Contract types for satisficing task allocation. In Proceedings of the AAAI Spring Symposium: Satisficing Models, pages 23--25, 1998.Google ScholarGoogle Scholar
  36. T. Schetter, M. Campbell, and D. M. Surka. Multiple agent-based autonomy for satellite constellation. Artificial Intelligence, Vol. 145:147--180, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation. Artificial Intelligence, Vol. 101(1-2):165--200, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. D. M. Surka. ObjectAgent for robust autonomous control. In Proceedings of the AAAI Spring Symposium, 2001.Google ScholarGoogle Scholar
  39. W. Truszkowski, D. Zoch, and D. Smith. Autonomy for constellations. In Proceedings of the SpaceOps Conference, 2000.Google ScholarGoogle Scholar
  40. R. VanDerKrogt and M. deWeerdt. Plan repair as an extension of planning. In Proceedings of the 15th ICAPS, pages 161--170, 2005.Google ScholarGoogle Scholar
  41. B. Werger. Cooperation without deliberation: A minimal behavior-based approach to multi-robot teams. Artificial Intelligence, Vol. 110:293--320, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. P. Zetocha. Satellite cluster command and control. IEEE Aerospace Conference, Vol. 7:49--54, 2000.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Collaboration among a satellite swarm

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          AAMAS '07: Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems
          May 2007
          1585 pages
          ISBN:9788190426275
          DOI:10.1145/1329125

          Copyright © 2007 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 14 May 2007

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,155of5,036submissions,23%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader