skip to main content
research-article

High-level interconnect model for the quantum logic array architecture

Published: 07 April 2008 Publication History

Abstract

We summarize the main characteristics of the quantum logic array (QLA) architecture with a careful look at the key issues not described in the original conference publications: primarily, the teleportation-based logical interconnect. The design goal of the the quantum logic array architecture is to illustrate a model for a large-scale quantum architecture that solves the primary challenges of system-level reliability and data distribution over large distances. The QLA's logical interconnect design, which employs the quantum repeater protocol, is in principle capable of supporting the communication requirements for applications as large as the factoring of a 2048-bit number using Shor's quantum factoring algorithm. Our physical-level assumptions and architectural component validations are based on the trapped ion technology for implementing quantum computing.

References

[1]
Aharonov, D. and Ben-Or, M. 1997. Fault tolerant computation with constant error. In Proceedings the Annual ACM Symposium on Theory of Computing (STOC), 176--188.
[2]
Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., and Regev, O. 2004. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Compute. 37, 1, 164--196.
[3]
Aliferis, P., Gottesman, D., and Preskill, J. 2005. Quantum accuracy threshold for distance 3 codes. Eprint: quant-ph/0504218.
[4]
Bahr, F., Boehm, M., Franke, J., and Kleinjung, T. 2005. Rsa-640 is factored! RSA Lab, Bedford, MA.
[5]
Balensiefer, S., Kregor-Stickles, L., and Oskin, M. 2005. An evaluation framework and instruction set architecture for ion-trap based quantum micro-architectures. In Proceedings the Annual International Symposium on Computer Architecture (ISCA), Madison, WI.
[6]
Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., and Weinfurter, H. 1995. Elementary gates for quantum computation. Phys. Rev. A. 52, 3457.
[7]
Barrett, M., Chiaverini, J., Schaetz, T., Britton, J., Itano, W. M., Jost, J. D., Knill, E., Langer, C., Liebfried, D., Ozeri, R., and Wineland, D. J. 2004. Deterministic quantum teleportation of atomic qubits. Nature 429.
[8]
Bell, J. S. 1964. On the Einstein-Podolsky-Rosen paradox. Phys. 1, 195--200.
[9]
Bennett, C., Brassard, G., Popescu, S., Schumacher B., Smolin, J. A., and Wooters, W. K. 1996. Purification of noisy entanglement and faithful teleportation via, noisy channels. Phys. Rev. Lett. 76, 722.
[10]
Bennett, C. H., Barassard, G., Crépeau, C., Jozsa, R., Peres, A., and Wooters, W. K. 1993. Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895--1899.
[11]
Briegel, H. and Raussendorf, R. 2001. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett 86, 910--913.
[12]
Britton, J., Leibfried, D., Beall J., Blakestad, R. B., Bollinger, J. J., Chiaverini, J., Epstein, R. J., Jost, J. D., Kielpinski, D., Langer, C., Ozeri, R., Reichle, R., Seidelin, S., Shiga, N., Wesenberg, J. H., and Wineland, D. J. 2006. A microfabricated surface-electrode ion trap in silicon. http://arxiv.org/abs/quant=ph/0605170.
[13]
Buhler, J., Lenstra, H., and Pomerance, C. 1994. Factoring integers with the number field sieve. In The Development of the Number Field Sieve. Lecture Notes: in Mathematics, vol. 1554. Springer, 50--94.
[14]
Bullock, S. S. and Markov, I. L. 2004. Asymptotically optimal circuits for arbitrary n-qubit diagonal computations. Quantum Inf. Comput. 4, 1, 027--047.
[15]
Cabrillo, C., Cirac, J. I., Garcia Fernandez, P., and Roller, P. 1999. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025--1033.
[16]
Chekuri, C., Johnson, R., Motwani, R., Natarajan, B., Rau, B., and Schlansker, M. 1996. Profile-Driven instruction level parallel scheduling with applications to superblocks. In Proceedings of the 29th International Symposium on Microarchitecture 29, 58--67.
[17]
Childs, A. M., Farhi, E., and Preskill, J. 2002. Robustness of adiabatic quantum computation. Phys. Rev. A 65.
[18]
Cirac, J., Ekert, A., Huelga, S., and Macchiavello, C. 1999. Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249.
[19]
Cirac, J. I. and Zoller, P. 1995. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091--4094.
[20]
Deitrich, B. L. and Hwu, M. W. 1996. Speculative hedge: Regulating compile-time speculation against profile variations. In Proceedings of the 29th International Symposium on Microarchitecture.
[21]
Deutsch, D. 1985. Quantum computational networks. Proc. Royal. Soc. London. A 400, 97--117.
[22]
Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., and Sanpera, A. 1996. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818--2821.
[23]
DiVincenzo, D. P. 2000. The physical implementation of quantum computation. Fortschr. Phys. 48, 771--783.
[24]
Draper, T., Kutin, S., Rains, E., and Svore, K. 2004. A logarithmic-depth quantum carry-lookahead adder. E-Print: quant-ph/0406142.
[25]
Duan, L., Blinov, B., Moehring, D., and Monroe, C. 2004. Scalable trapped ion quantum computation with a probabilistic ion-photon mapping. E-Print: quant-ph/0401020.
[26]
Dur, W., Briegel, H. J., Cirac, J. I., and Zoller, P. 1999. Quantum repeaters based on entanglement purification. Phys. Rev. A59, 169.
[27]
Farhi, E., Goldstone, J., Gutmann, S., and Sipser, M. 2000. Quantum computation by adiabatic evolution. arXiv.org=quant-ph/0001106.
[28]
Fowler, A., Thompson, W. F., Yan, Z., Stephens, A. M., Plourde, B., and Wilhelm, F. K. 2007. Long-Range coupling and scalable architecture for superconducting flux qubits. arXiv:cond-mat/0702620.
[29]
Freedman, M., Kitaev, A., Larsen, M., and Wang, Z. 2003. Topological quantum computation. Bull. Amer. Math. Soc. 40, 3138.
[30]
Gottesman, D. 2000. Fault tolerant quantum computation with local gates. J. Modern Optics 47, 333--345.
[31]
Gottesman, D. 1998. Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127--137.
[32]
Gottesman, D. K. and Chuang, I. L. 1999. Quantum teleportation is a universal computational primitive. Nature 402, 390--392.
[33]
Grover, L. K. 1997. Quantum telecomputation. E-Print: http://arXiv.org/quant-ph/9704012.
[34]
Hensinger, W. K., Olmschenk, S., Stick, D., Hucul, D., Yeo, M., Acton, M., Deslauriers, L., Rabchuk, J., and Monroe, C. 2005. T-Junction ion trap array for two-dimensional ion shuttling, storage and manipulation. E-Arxiv: quant-ph/0508097.
[35]
Hime, T., Reichardt, P., Plourde, B., Robertson, T., Wu, C.-E., Ustinov, A., and Clarke, J. 2007. Solid-State qubits with current-controlled coupling. Sci. 314, 5804, 1427--1429.
[36]
Hollenberg, L. C. L., Dzurak, A. S., Wellard, C., Hamilton, A. R., Reilly, D. J., Milburn, G. J., and Clark, R. 2003. Charge-Based quantum computing using single donors in semiconductors. Phys. Rev. B 69, 113301.
[37]
Isailovic, N., Patel, Y., Whitney, M., and Kubiatowicz, J. 2006. Interconnection networks for scalable quantum computers. In Proceedings of the 33rd Annual ACM International Symposium on Computer Architecture (ISCA), Boston, MA.
[38]
Jones, J., Vedral, V., Ekert, A., and Castagnoli, G. 2000. Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869--871.
[39]
Kane, B. 1998. A silicon-based nuclear spin quantum computer. Nature 393, 133--137.
[40]
Kim, J., Pau, S., Ma, Z., McLellan, H., Gates, J., Kornblit, A., and Slusher, R. 2005. System design for a large-scale ion-trap quantum information processor. Quantum Inf. Comput. 5, 7, 515.
[41]
Kitaev, A. Y. 1997. Quantum error correction with imperfect gates. In Proceedings of the 3rd International Conference on Quantum Communication and Measurement, 181--188.
[42]
Knill, E. and Laflamme, R. 1997. A theory of quantum error-correcting codes. Phys. Rev. A 55, 900--911.
[43]
Knill, E., Laflamme, R., and Milburn, G. 2001. A scheme for efficient quantum computation with linear optics. Nature 409, 4652.
[44]
Langer, C., Ozeri, R., Jost, J. D., Chiaverini, J., DeMarco, B., Ben-Kish, A., Blakestad, R. B., Britton, J., Hume, D. B., Itano, W. M., Liebfried, D., Reichle, R., Rosenband, T., Schaetz, T., Schmidt, P. O., and Wineland, D. J. 2005. Long-Lived qubit memory using atomic ions. E-Print: quant-ph/0504076.
[45]
Lim, Y. L., Barrett, S. D., Beige, A., Kok, P., and Kwek, L. C. 2005. Repeat-Until-Success quantum computing using stationary and flying qubits. E-Print: http://arXiv.org/quant-ph/0508218.
[46]
Makhlin, Y., Schoen, G., and Shnirman, A. 1999. Josephson-Junction qubits with controlled couplings. Nature 398, 305.
[47]
Matsukevich, D. and Kuzmich, A. 2004. Quantum state transfer between matter and light. Sci. 306, 5696, 663--666.
[48]
Metodi, T. S., Thaker, D. D., Cross, A. W., Chong, F. T., and Chuang, I. L. 2005. A quantum logic array microarchitecture: Scalable quantum data movement and computation. In Proceedings of the 38th International Symposium on Microarchitecture (MICRO).
[49]
Metodi, T. S., Thaker, D. D., Cross, A. W., Chong, F. T., and Chuang, I. L. 2006. Physical operations scheduler in a quantum information processor. In Proceedings of the SPIE Defense and Security Symposium, Orlando, FL.
[50]
Nielsen, M. 2004. Optical quantum computation using cluster states. Phys. Rev. Lett. 93 (040503).
[51]
Nielsen, M. A. and Chuang, I. L. 2000. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK.
[52]
Nielsen, M. A. and Dawson, C. M. 2004. Fault-Tolerant quantum computation with cluster states.
[53]
Niskanen, A., Harrabi, K., Yoshihara, F., Nakamura, Y., Lloyd, S., and Tsai, J. 2007. Quantum coherent tunable coupling of superconducting qubits. Sci. 316, 5825, 723--726.
[54]
Oskin, M., Chong, F., and Chuang, I. 2002. A practical architecture for reliable quantum computers. IEEE Comput.
[55]
Ozeri, R., Langer, C., Jost, J. D., De Marco, B., Ben-Kish, A., Blakestad, B. R., Britton, J., Chiaverini, J., Itand, W. M., Hume, D. B., Leibfried, D., Rosenband, T., Schmidt, P. O., and Wineland, D. J. 2004. Hyperfine coherence in the presence of spontaneous photon scattering. arXiv:quant-ph/0502063.
[56]
Pearson, C. E., Leibrandt, D. R., Bakr, W. S., Mallard, W. J., Brown, K. R., and Chuang, I. L. 2006. Experimental investigation of planar ion traps. Phys. Rev. A 73, 032307.
[57]
Platzman, P. M. and Dykman, M. I. 1999. Computing with electrons floating on liquid helium. Sci. 284, 1967--1969.
[58]
Reichardt, B. W. 2004. Improved ancilla preparation scheme increases fault-tolearant threshold. E-Print: quant-ph/0406025.
[59]
Reichle R., Leibfried, D., Knill, E., Britton, J., Blakestad, R., Jost, J., Langer, C., Ozeri, R., Seidelin, S., and Wineland, D. 2006. Experimental purification of two-atom entanglement. Nature 443, 19, 838--841.
[60]
Riebe, M., Häffner, H., Roos, C., Hänsel, W., Benheln J., Körber, T. W., Becher, C., Schmid-Kaler, F., and Blatt, R. 2004. Deterministic quantum teleportation with atoms. Nature 429, 6993, 734--737.
[61]
Seidelin, S., Chiaverini, J., Reichle, R., Bollinger, J., Leibfried, D., Britton, J., Wesenberg, J. H., Blakestad, R. B., Epstein, R. J., Hume, D., Itano, W. M., Jost, J. D., Langer, C., Ozeri, R., Shiga, N., and Wineland, D. J. 2006. A microfabricated surface-electrode ion trap for scalable quantum information processing. ArXiv Quantum Physics e-prints.
[62]
Shende, V., Bullock, S., and Markov, I. 2006. Synthesis of quantum logic circuits. IEEE Trans. Comput.-Aided Des. 25, 6, 1000--1010.
[63]
Shende, V. V., Markov, I. L., and Bullock, S. S. 2003. Minimal universal two-qubit quantum circuits. Phys. Rev. A 69, 062321, 1--7.
[64]
Shende, V. V., Markov, I. L., and Bullock, S. S. 2004. Finding small two-qubit circuits. In Proceedings of the SPIE, vol. 5436, 348--359.
[65]
Shobaki, G. and Wilken, K. 2004. Optimal superblock scheduling using enumeration. In Proceedings of the 37th International Symposium on Microarchitecture (MICRO).
[66]
Shor, P. W. 1995. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 54, 2493.
[67]
Skinner, A., Davenport, M., and Kane, B. 2003. Hydrogenic spin quantum computing in silicon: A digital approach. Phys. Rev. L 90, 087901 (Feb.).
[68]
Spiller, T., Nemoto, K., Braunstein, S., Munro, W., van Loock, P., and Milburn, G. 2005. Quantum computation by communication. http://arxiv.org/abs/quant-ph/0509202.
[69]
Steane, A. 1996. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793--797.
[70]
Steane, A. 2004. How to build a 300 bit, 1 GOP quantum computer. arXiv:quant-ph/0412165.
[71]
Svore, K., Terhal, B., and DiVincenzo, D. 2004. Local fault-tolerant quantum computation. E-Print: quant-ph/0410047.
[72]
Svore, K. M., DiVincenzo, D. P., and Terhal, B. M. 2006. Noise threshold for a fault-tolerant two-dimensional lattice architecture. E-Print (Arxiv.org): quant-ph/0604090.
[73]
Thaker, D. D., Metodi, T. S., Cross, A. W., Chong, F. T., and Chuang, I. L. 2006. Quantum memory hierarchies: Efficient designs to match available parallelism in quantum computing. In Proceedings of the 33rd Annual ACM International Symposium of Computer Architecture (ISCA), Boston, MA.
[74]
Van Meter, R., Nemoto, K., Munro, W. J., and Itoh, K. M. 2006. Distributed arithmetic on a quantum multi-computer. In Proceedings of the 33rd Annual ACM International Symposium of Computer Architecture (ISCA), Boston, MA.
[75]
Van Meter, R. and Itoh, K. M. 2004. Fast quantum modular exponentiation. E-Print: quant-ph/0408006.
[76]
Van Meter, R. and Oskin, M. 2006. Architectural implications of quantum computing technologies. ACM J. VAN Emerging Technol. Comput. Syst. 2, 1.
[77]
Wineland, D., Monroe, C., Itano, W., Leibfried, D., King, B., and Meekhof, D. 1998. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. NIST 103, 259--328.
[78]
Wineland, D. and Heinrichs, T. 2004. Ion trap approaches to quantum information processing and quantum computing. A Quantum Information Science and Technology Roadmap. url: http://quist.lanl.gov.
[79]
Wineland, D., Leibfried, D., Barrett, M., Ben-Kish, A., Bergquist, J. C., Blakestad, R. B., Bollinger, J. J., Britton, J., Chaverini, B., DeMarco, B., Hume, D., Itano, W. M., Jensen, M., Jost, J. D., Knill, E., Koelemeij, J., Langer, C., Oskay, W., Ozeri, R., Reichle, R., Roseband, T., Schaetz, T., Schmidt, P. O., and Seideling, S. 2005. Quantum control, quantum information processing, and quantum-limited metrology with trapped ions. In Proceedings of the International Conference on Laser Spectroscopy (ICOLS).
[80]
Wootters, W. and Zurek, W. 1982. A single quantum cannot be cloned. Nature 299, 802--803.
[81]
Yimsiriwattana, A. and Lomonaco, S. J. 2004. Distributed quantum computing: A distributed Shor algorithm. E-Print: arXiv.org:quant-ph/0403146.
[82]
Zeng, B., Zhou, D., Xu, Z., and Sun, C. 2003. Quantum teleportation using cluster states. ArXiv Quantum Physics e-prints.

Cited By

View all
  • (2024)Physical Synthesis in Distributed Quantum ArchitecturesPhysica Scripta10.1088/1402-4896/ada18bOnline publication date: 19-Dec-2024
  • (2023)HetArch: Heterogeneous Microarchitectures for Superconducting Quantum SystemsProceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture10.1145/3613424.3614300(539-554)Online publication date: 28-Oct-2023
  • (2016)Characterization of quantum workloads on SIMD architectures2016 IEEE International Symposium on Workload Characterization (IISWC)10.1109/IISWC.2016.7581264(1-9)Online publication date: Sep-2016
  • Show More Cited By

Index Terms

  1. High-level interconnect model for the quantum logic array architecture

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Journal on Emerging Technologies in Computing Systems
    ACM Journal on Emerging Technologies in Computing Systems  Volume 4, Issue 1
    March 2008
    86 pages
    ISSN:1550-4832
    EISSN:1550-4840
    DOI:10.1145/1330521
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 07 April 2008
    Accepted: 01 November 2007
    Received: 01 November 2007
    Published in JETC Volume 4, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. QLA
    2. Quantum computer architecture design
    3. fault tolerance
    4. large scale
    5. quantum
    6. teleportation

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)15
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 18 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Physical Synthesis in Distributed Quantum ArchitecturesPhysica Scripta10.1088/1402-4896/ada18bOnline publication date: 19-Dec-2024
    • (2023)HetArch: Heterogeneous Microarchitectures for Superconducting Quantum SystemsProceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture10.1145/3613424.3614300(539-554)Online publication date: 28-Oct-2023
    • (2016)Characterization of quantum workloads on SIMD architectures2016 IEEE International Symposium on Workload Characterization (IISWC)10.1109/IISWC.2016.7581264(1-9)Online publication date: Sep-2016
    • (2016)Physical design of quantum circuits in ion trap technology - A surveyMicroelectronics Journal10.1016/j.mejo.2016.07.00155:C(116-133)Online publication date: 1-Sep-2016
    • (2014)Large-scale modular quantum-computer architecture with atomic memory and photonic interconnectsPhysical Review A10.1103/PhysRevA.89.02231789:2Online publication date: 13-Feb-2014
    • (2013)Simultaneous improvement of area, delay, and fault tolerance in quantum circuitsThe 17th CSI International Symposium on Computer Architecture & Digital Systems (CADS 2013)10.1109/CADS.2013.6714238(59-64)Online publication date: Oct-2013
    • (2013)Path selection for quantum repeater networksNetworking Science10.1007/s13119-013-0026-23:1-4(82-95)Online publication date: 15-Dec-2013
    • (2009)Reliability Analysis of Qubit Data Movement for Distributed Quantum ComputationProceedings of the 2009 12th Euromicro Conference on Digital System Design, Architectures, Methods and Tools10.1109/DSD.2009.187(481-487)Online publication date: 27-Aug-2009

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media