Designing Interaction Behaviour in Service-Oriented
Enterprise Application Integration

Teduh Dirgahayu
University of Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands
+31 53 4894226

t.dirgahayu@ewi.utwente.nl

ABSTRACT

In this paper we present an approach for desigmitaraction

behaviour in service-oriented enterprise applicatiotegration.
The approach enables business analysts to acpeeticipate in
the design of an integration solution. In this wasg expect that
the solution meets its integration goal and busimeguirements.
The approach consists of four steps: (i) represkeetexisting
services to be integrated in platform-independendets; (ii)

derive the models of the goals and business regaints of the
services; (iii) check whether an abstract intecactiepresenting
the integration goal may occur between the seryaes (iv) if so,

(recursively) refine the interaction into a reabkadesign. The
approach is characterised by an early check orpdissibility of

an integration solution, clear expressions of titegration goal
and business requirements, and explicit use ofiéiseriptions of
the existing services as bottom-up knowledge duréfimement.
To support the approach, we present a set of pattef

interaction refinement as guidelines in refining staéct
interactions.

Categories and Subject Descriptors

D.2.1 [Software Engineerind: Requirements/Specifications —
languages, methodologiesd.1.1 [Models and Principleg:
Systems and Information Theorygeneral system theory.

General Terms
Design, Languages.

Keywords
Interaction behaviour, interaction design,
computing, enterprise application integration.

senadented

1. INTRODUCTION

Service-oriented computing emerges as a promisargdigm to
support enterprise application integration (EAI)[$4 In this

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.

SAC’08 March 16-20, 2008, Fortaleza, Ceard, Brazil.

Copyright 2008 ACM 978-1-59593-753-7/08/0003...$5.00.

Dick Quartel
Telematica Instituut
P.O. Box 589, 7500 AN Enschede
The Netherlands
+31 53 4850451

dick.quartel@telin.nl

Marten van Sinderen
University of Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands
+31 53 4893677

m.j.vansinderen@utwente.nl

paradigm, applications are represented as softeamdces that
expose their external behaviour without revealihgirt internal
functions and structures. An integration solutisrihien specified
in terms of interactions between such services.

An interaction can be simple, e.g. sending a redfieesa product
catalogue from a retailer to a supplier, or complexy. a
negotiation for a product’s price through an auctid complex
interaction is composed of a number of simpler radgons
performing certain behaviour. We call such behavioteraction
behaviour When designing the behaviour of an integration
solution, designers have to take into accounth@) hkehaviour of
the existing services and (ii) the interaction hébar between
those services. In many cases, the behaviour ofettisting
services should be kept unmodified. The desigrhefliehaviour
of an integration solution is hence the design mEraction
behaviour between those services.

In designing an integration solution, we should éhasn

integration goal and the descriptions of the exgsservices to be
integrated. The goal refers to the effect thatnignded to be
established by the integration [7]. Related to ¢oal are the
business requirements of the services, which iteligehat the
services require to achieve the goal. The goal business
requirements are typically defined in a platforrdépendent
manner at a high abstraction level by businessyatsalOn the
other hand, the fact that service descriptions tachnology-

specific, e.g. in IDL or WSDL, usually leads to ttefinition of

the integration solution at an implementation ldwelapplication

developers. Different domains, i.e. business aotnelogy, and
the gap between a high abstraction level and atemgntation

level may result in an integration solution thaeslaot meet the
integration goal and business requirements [9].

The objective of this paper is to present an apgrdar designing
interaction behaviour in service-oriented EAI. Thepose of this
approach is to enable business analysts to actpaiycipate in

the design of an integration solution. With suchtipgoation, we

expect that the integration solution meets its goal business
requirements. To handle the gap between a highaahisin level

and an implementation level, the approach usessigrdenethod
utilising multiple abstraction levels.

This paper is further structured as follows. Secfopresents our
integration approach. Section 3 identifies patteshnteraction

refinement that can be useful in designing intéoacbehaviour at
multiple abstraction levels. Section 4 illustraties application of

the approach with an example. Section 5 discusdated work.
Finally, Section 6 concludes this paper and idegtifuture work.

2. APPROACH

In this section we propose an approach for desigiriteraction
behaviour in service-oriented EAIl. We first deserilolesign
concepts and a design method that are used byfeach.

2.1 Interaction Design Method

We define aninteraction as a shared activity which involves
multiple participants to establish some commonltesar desired
effects. The participation of each participantdépresented by an
interaction contribution which defines the constraints it has on
the interaction results. An interaction can onlycwrcif the
constraints of all participants are satisfied.His tase, a common
result is established (same for all, but possibpaticipant may
not be interested in the complete results). Anrauion either
occurs for all participants or does not occur. hié tinteraction
occurs, all participants can refer to the intemactiesults. If the
interaction does not occur, none of the participasen refer to
any (partial or temporal) result of the interaction

To support multiple abstraction levels, we defihe notion of

abstract interactiorto represent a composition of interactions as a

single interaction at a higher abstraction leveh Abstract
interaction concerns with (i) the results of thenposition and (ii)
the constraints which should be satisfied by treults. In this
way, an abstract interaction represents the gotileo€omposition
abstracting from the way this goal is achieved.

In a top-down design process, an abstract interads meant to
be refined into a composition of (less) abstraterictions at a
lower abstraction level or to be mapped onto imtEva

mechanisms supported by communication middlewara. A

abstract interaction does not impose a certain raoten
behaviour design or certain interaction mechanisms
interaction behaviour design, however, should confdo the
abstract interaction it refines. The interactiorhdgour design
should establish the results specified by the abstinteraction
without violating the constraints.

To support modelling with abstract interactions, wee

behavioural and information design concepts defiedthe

COSMO framework [13], e.g. behaviour, activity, sality

condition, class, and constraint. Interaction rssate represented
as information attributes An information attribute has an
information type and will be assigned a value wtieninteraction
occurs.

Figure 1 graphically represents an abstract interacnamed
purchase between abuyer and aseller service. Services are
represented as rounded rectangles. An interadicgpresented as
segmented ellipses linked with a line. A segmengdiipse
represents the interaction contribution of a servioformation
attributes and constraints are written in boxeachgd to their
corresponding interaction contributions. In theufig thebuyer
wants to buy a notebook for a maximal price of @@o. The
seller wants to sell any article listed in its catalogwi&h a
minimal price that depends on the particular agticlf the
interaction occurs, it results in the purchase nbtebook at some
price that meets both constraints.

Article a, EuroPrice p
isNotebook(a) &
p <900

Figure 1. A purchase interaction betweenbuyer and seller

The purchase of a notebook is the goal of thisractéon. To
achieve this goal, the participants specify theinsibess
requirements as interaction constraints. Duger requires that
the seller has a notebook whose price is less than 900 &ine.
seller requires that théuyer selects an article from its catalogue
and agrees for a purchase price that is higher thararticle’s
minimum price. Expressing the goal aspect of asradtion as
constraints on the interaction results has beegudied in [13].

Article a, EuroPrice p
inCatalog(a) &
p > minPrice(a)

In an interaction involving two participants, eaafteraction
contribution should specify the same set of infdiomattributes.
In an interaction involving more than two partiais a
participant may be interested only in some parthef results.
Thus each interaction contribution does not neci#gsspecify
the same set of information attributes. In thisecas information
attribute should be specified in at least two iatton
contributions. An interaction is possible or maycurc if the
intersection of the constraints of each informatiatiribute
produces a non-empty set. Tharchaseinteraction in Figure 1
may occur if theseller has a notebook in its catalogue with a
minimum price less than 900 euro.

We explain the design method with an example. Ssgpploat we
have apurchaseinteraction as in Figure 1. Since the interaction
cannot be realised with any available interacticechanism, we
apply the design method to refine the interactioto ia set of
(less) abstract interactions at a lower abstractievel, i.e.
selection payment and delivery, which are to be performed in
sequence. Figure 2 shows the refinement resultb@ijerand the
sellerare refined intduyer’ andseller’ respectively, because it is
the responsibility of the services to determine aheéer of those
interactions. Information attributes and constiimiay also need
to be refined. If an interaction at this abstrattievel still cannot
be mapped onto available interaction mechanismes, désign
method is (recursively) applied to that interactidbifferent
patterns of interaction refinement are possible. #ethem in
Section 3.

Article a, EuroPrice p
isNotebook(a) &
p < 900

Article a, EuroPrice p
inCatalog(a) &
p > minPrice(a)

L selection »
)
— g
Cdliver | | deliver™

Location |, DayDuration d Location |, DayDuration d
| ="Enschede” & inRegion(l, “Europe”) &
ds<7 2<ds5

PayMethod m
m = creditCard

PayMethod m

m = (cash | transfer
| creditCard)

delivery

Seller’

Figure 2. Refinement of thepurchase interaction (Pattern 1)

2.2 Integration Approach

Our integration approach assumes that the existmngces to be
integrated have been identified. The approach stmsf the
following steps.

1. Represent the services in platform-independent modlke
models are useful for understanding the behaviduthe
services, including the way to interact with thevemes. The
models are also useful for identifying (i) inforneet required
and produced by the services and (ii) constratms tust be
satisfied to interact with the services. Platfondependent
models allow business analysts to participate endésign of
an integration solution.

Derive the models of the goals and business remgrgs of
the services.This is done by abstracting the platform-
independent models from the way to interact wighgarvices.
This step results in models at a higher abstradtweel. Each
model has only one interaction contribution thatacly
represents the goal and requirements of each seiMiis step
includes abstraction of information attributes aostraints.
We refer to [13] for information and constraintsstaction.
The models allow business analysts to focus on the
information attributes and constraints specified e ch
service.

Check whether an interaction between the servicesssible.
First, the models are linked to form an abstrateraction
representing the integration goal. Then, the chisckpplied
on the information attributes and constraints ofe th
interaction. If the interaction is not possible, @@ clude that
it is impossible to integrate the services. Theegrdtion
solution should be redesigned from the start bytifieng
existing services that should involve in the inssigm.
Alternatively, the existing services should be rfiedi to
make the interaction possible.

If the interaction is possible, (recursively) refithe abstract
interaction.The business analysts should bear in mind that the
purpose of the refinement is to eventually enabieractions
between models obtained in Step 1. These modedsrofce
descriptions constrain the refinement. Patternggraction
refinement (presented in Section 3) can be usagligelines

in refining an interaction. When the design resulfimm the
refinement is detailed enough to be realised, apin
developers take over and realise the design
implementation platform.

The integration approach offers three main benefisst, at a
high abstraction level, business analysts can etdgk whether
an integration solution may exist (Step 3). Doingasoids trial-
and-error attempts at an implementation level thay end up
with a conclusion saying that an integration solutiis
impossible. Hence, the approach potentially save® tand
efforts.

Second, the approach clearly expresses the ini@grgbal and
business requirements (Step 2 and 3). Clear expnsssf the
integration goal and business requirements allovassessment
on whether an integration solution meets its goal husiness
requirements.

Third, the approach explicitly uses the descripiofthe existing
services as bottom-up knowledge during refinemdnabstract

in some

interactions (Step 4). Such bottom-up knowledgestrains the
refinement to ensure that the integration solutan be mapped
onto existing services. Without such knowledgeineghent may
result in a design of an integration solution ttenot be mapped
onto existing services or that requires modificatid the existing
services.

3. REFINEMENT PATTERNS

In this section we identify some basic patternsirgéraction
refinement. Each pattern is presented with an elamphe
information attributes and constraints of an alsstrateraction
may need to be refined and distributed over afsgess) abstract
interactions. Due to space limitation, we do naivelinformation
attributes and constraints in figures. In refinetmemultiple
patterns can be applied at the same time.

In order to assess conformance, we adopt a metiroaiséessing
conformance of designs that use the concepts ofCBEMO

framework. The method is based on calculating tiraction of
a design (i.e., abstracting from the design dethidd¢ have been
added) and comparing this abstraction to the aalgilesign. For
this method, abstraction rules have been defingfl12][13]

We assume that the occurrence of an abstract dtiena
corresponds to the occurrence of a number of (legs}ract
interactions at a lower abstraction level. A (les#)stract
interaction that corresponds to the abstract intema is called a
reference activityThe results specified by the abstract interaction
can be referred only after the occurrence of tfereace activity.

A (less) abstract interaction that is not a refeeeactivity is called

an inserted activity[13]. For each pattern, we indicate which
interactions are reference and inserted activitiBetailed
conformance assessment is beyond the scope qfapés.

Pattern 1: Decomposition into a set of interactions

An abstract interaction between two services idneef by
decomposing it into a set of related (less) abstirateractions.
Figure 2 shows a model resulted from the applicatd this
pattern on the abstract interaction in Figure 1ffegnt
relationships between the (less) abstract intemastare possible,
e.g. choice and concurrency. This pattern can tedan [2][13].

The delivery interaction in Figure 2 is the reference activity
corresponding to the abstragtirchaseinteraction in Figure 1.
Theselectandpaymeninteractions are inserted activities.

Pattern 2: Introduction of peer services

An abstract interaction is refined by introducinguamber of peer
services into the interaction. It results in a g)esbstract
interaction whose participants are the originavises and the
newly-introduced peer services. A participant i necessarily
interested (and therefore does not participategllinnformation
attribute.

Figure 3 illustrates this pattern.pirchasanteraction is basically
done between huyerand aseller. In purchasing expensive and
high-risk products e.g. shares of a company biinger may want

to introduce its financiehdvisorin the interaction. As a result, the
refined purchase’ interaction has three participantbuyer’
seller’, andadvisor. They are all involved in the same interaction,
but possibly they are not involved in all infornmati attributes.
Since the abstragburchaseinteraction is refined into a single
interaction, theurchase'’interaction is the reference activity.

* refinement

Advisor

Figure 3. Introduction of peer services (Pattern 2)
Pattern 3: Introduction of an intermediary service

An abstract interaction is refined by introducing iatermediary
service that defines the behaviour of the abstréetaction. Each
original service then interacts only with the imbediary service.
The intermediary service defines the relationstipsveen those
interactions.

In contrast to Pattern 2, this pattern eliminatiesad interactions
between original services. This pattern is usedul refining an
abstract interaction involving more than two papi@nts into a
realisable design because most available interactiechanisms
support two participants only. This pattern caridaed in [1].

Figure 4 illustrates this pattern. paymentinteraction between a
buyerand aselleris refined by introducing bankthat provides a
money transfer service. Thieuyer and seller are refined into
buyer’ and seller’ respectively. To transfer a sum of money as
payment, thébuyer’ does asendinteraction with thebank Then
the bank does anatification interaction with theseller’ to notify
that a sum of money has been added teétler's account. There

is no direct interaction betweemuyer and seller. The
notification interaction is the reference activity. Theend
interaction is an inserted activity.

refinement

send m notification
Buyer’ LG—‘EJ Seller

Figure 4. Introduction of an intermediary service Pattern 3)

Pattern 4: Distribution over pairs of services

An abstract interaction involving more than two tgdpants is
refined into a set of (less) abstract interactithrag are distributed
over pairs of participants. As Pattern 3, this grattis useful for
refining an abstract interaction into a realisadiesign. This
pattern can be found in [2].

Figure 5 illustrates this pattern. delivery interaction has three
participants:seller, buyer, andcourier. The interaction is refined
into a number of (less) abstract interactions, fte delivery
notification interaction betweegseller’ and buyer’, the product
handinginteraction betweegeller’ andcourier’, and theproduct
delivery interaction betweertourier’ and buyer’. The product
delivery interaction is the reference activity. Thaelivery
notification and product handing interactions are inserted
activities.

delivery (Seller

Courier

* refinement

delivery
notification

s

product
delivery

product
handing

Courier’

Figure 5. Distribution over pairs of services (Patrn 4)

4. EXAMPLE

To illustrate the application of our integrationpapach, we apply
the approach on an integration case based on agration
scenario presented in the SWS challénde this case, we
integrate the ordering application of a customédledaBlue with
an order management (OM) application of a manufactcalled
Moon The behaviour of these services is given by teaario.

Step 1. We model in a platform-independent manner the
applications as services. Figure 6 shows the mofidBlues
ordering application as a service. The service tigesnteraction
contributions, namelgendPOand receivePOC to interact with

its business partner. They represent the sending péirchase
order (PO) and the receipt of the purchase ordefiromation
(POC), respectively. A PO consists of a customeése ¢us)
and a list of items to be orderate(ny. A POC consists of the PO
(custanditems it corresponds to and the order stasiat(3.

[String cust, ltem[J items]

feceive ||
POC

Figure 6. Blu€'s ordering system

String cust, Item[] items,
int status

name = sendPO.name &
items = sendPO.items

Figure 7 shows the model bfoon's OM application as a service.
To place an order, first an order must be createwghcreate
order interaction contribution), then the items to beesed are
added one-by-oneadd iten), and finally the order are closed
(close orde). The service then sends back a confirmation dche
ordered itemdonfirm item). The service uses a customer D)

to create an order and each order is given an ¢bd@iD).

Step 2. We derive the goals and business requirementhef t
services by abstracting the obtained model8IlU&s service, the
information attribute includes the customer’s narthe list of
items to be ordered, and the summary of the ortlus In
Mooris OM service, the information attributes includése
customer ID, a list of items to be ordered, anidtaof status. The
information attributes abstract from the order Exause order ID
is meaningful forMooris OM service only. It is generated and
consumed byooris OM service.

! http://sws-challenge.org/

OM Moon

[CustID cID, OrderID oid

[OrderID oid, Item item
| oid = createOrder.oid

[OrderID oid
‘ oid = createOrder.oid

OrderlD oid, Item item,
int status

oid = createOrder.oid

Figure 7.Moon's order management system

Step 3. We link the abstract services to form an abstract

interaction as shown in Figure 8. We then checkthdrethe
interaction is possible. After checking, we coneuthat the
interaction is not possible becaug®on's OM service requires
information about customer ID, whilBlues system does not
supply it. No integration solution may exist.

CustID cID
Item([] items, int[] status

String cust,
Item[] items, int status

handle
order

Figure 8. Linking abstract models

We do not want to modify the existing services. tker

identification of existing services that are reedirindicates that
Mooris customer relationship management (CRM) apphbcati
should involve in the integration solutioMooris CRM service

returns the customer ID of a given customer nangiré 9 shows
a new abstract interaction for the integration sofu After

checking the information attributes and constraimf the

interaction, we conclude that the interaction is/mmssible.

Step 4.We refine the abstract interaction. We have twadonst
to apply Pattern 3 or Pattern 4. Considering thelet®obtained
from Step 1, we apply Pattern 3 and produce a destiga lower
abstraction level as shown in Figure 10. Informatttributes and
constraints are omitted for brevity. We introduceistermediary
service calledViediator between the original servicelslediator
service is responsible for receiving a PO senBhlugs service,
searching inMoon's CRM service for the customer ID of the

customer name indicated in the PO, placing an ordéfoor’s
OM service, and then sending back a POMBloes service.
Observe that we apply also Pattern 1 to the interadetween
Blue andMediator.

String cust,
Item[] items, int status

String cust, CustID cID

CustlD cID
Item[] items, int[] status

Figure 9. Moon’s CRM service is now included

Figure 10. An introduction of Mediator as an intermediary

Further refinement (using Pattern 1) on the int@vacbetween
Mediator and Moorn's OM service results in a design shown in
Figure 11. The refinement is intended to endWéliator service
to interact with concret®oori's OM service shown in Figure 7.
For this, the Mediators behaviour should match with the
interaction contributions defined Moor's OM service.

5. RELATED WORK

The existence of an integration solution depends noeny
interoperability issues. Issues that are relatedhts paper are
data mismatchesand behaviour mismatches[9]. Several
approaches have been proposed to solve these isstheEsit
modifying existing services, e.g. approaches listefb][10][14].
However, the absence of information cannot be sblw&hout
modifying existing services to provide the requinefbrmation or
to relax interaction constraints. In our approadtie absence of
information is represented by the intersectionhef tonstraints of
the interaction’s information attributes produciag empty set.

Mediator

Add

more items?

CRM Moon

search
custiD

OM Moon

Figure 11. The integration solution

Therefore, we consider that our approach’s chectherexistence
of an integration solution is fundamental. Approsgfior solving
any data mismatches or behaviour mismatches capgizd only
if the check indicates that an integration solutieay exist.

Another approach to service-oriented EAI is preseéim [9]. The
approach defines two abstraction levels, namelyniess services
and information technology (IT) services; and cetssiof three
steps: (i) lifting IT service descriptions to buseis service
descriptions, (i) solving the integration probleat business
services level, and (iii) deriving an IT integratisolution from
the business integration solution. Our integratiapproach
extends this approach in three ways. First, ourcggh allows
business analysts to check whether services camtbgrated
before designing an integration solution. Second, approach
captures goals and business requirements in thigndesThird,
our approach allows business analysts to define masy
abstraction levels as necessary.

An approach for designing an integration solutidnnaultiple

abstraction levels can also be found in [5]. At teey first step,
the approach considers an integration solution dsoker or
intermediary service. Hence, the approach limitselft to

modelling integration solutions that are based ofhub-and-

spoke’ architecture [4]. Our integration approaeim de used to
design an integration solution that is based ohud-and-spoke’
(Pattern 3) or a ‘point-to-point’ architecture (feah 4).

EAI can be seen as a way to enable interorganisstigorkflows
[17]. Approaches presented in [3][18] first defiae common
workflow to be shared by several business partaedsthen map
pieces of the workflow onto those partners. The piap
produces a set of interfaces; each of which shbelinplemented
by the corresponding partner. In service-orientesnmuting,
these interfaces define the partners’ service gegms. These
approaches (and also the approach in [5] that veeudsed
earlier) are purely top-down approaches that do cwtsider
functionality that might already be available at thusiness
partners. Our approach combines a top-down appredébhthe
use of bottom-up knowledge in order to ensure @hnaintegration
solution can be mapped onto existing services.

6. CONCLUSION

We have presented an approach for designing irii@nac
behaviour in service-oriented EAIl. The purposehi$ approach
is to enable active participation of business astalin the design
of an integration solution. We expect that actieetipipation of

business analysts leads to integration solutioas bletter meet
integration goals and business requirements. Tipgoaph uses
an interaction design method that supports multaddstraction

levels. The approach can be characterised by itsfit®, i.e. (i) an

early check whether an integration solution maystexii) clear

expressions of the integration goal and businesgsin@ments, and
(iii) explicit use of the descriptions of the ekigf services as
bottom-up knowledge in refinement. To support thpraach, we

identify a set of patterns of interaction refinemen

As in [15][16], our approach basically considerteiactions as
first-class entities. It would be easier to handlecomplex
interaction in an abstract way and refine the ax#on later when
some details become essential for its design. Bysidering an
interaction as a first-class entity, an interactaam be a starting

point for refinement. In this way, we expect thia¢ refinement
results in matched sets of interaction contribwgiom the

participants. If interactions are not considered fast-class

entities, interaction refinement is done only asoasequence of
the refinement of its interaction contributions.cBurefinement
potentially results in a set of interaction conttibns in one
participant that do not match with a set of intémac

contributions in another participant. Furthermateoffers only

two patterns of interaction refinement, i.e. Paigel and 4.

The integration approach combines a top-down desfproach
with bottom-up knowledge. A top-down design apploac
gradually transforms the integration goal and bessn
requirements into designs that are detailed endoidie realised.
In this way, we expect that the integration solutioeets its goal
and business requirements. Bottom-up knowledget@ins the
refinement of an abstract interaction. By consitgrisuch
knowledge during a design process, we expect ligaintegration
solution can be mapped onto existing services.

In this paper, we have identified some patternantdraction

refinement. Our future work will be the developmeiitspecific

conformance assessment rules for the patternsiebetrules, we
will also include time attributes of an interacticd@onstraints on
time attributes determine when and how long arragtéeon may

occur. Furthermore, we will apply our approach torencases in
order to evaluate its usability.

7. ACKNOWLEDGMENTS

This work is part of the Freeband A-MUSE projebttg:/a-
muse.freeband.pl which is sponsored by the Dutch government
under contract BSIK 03025.

8. REFERENCES

[1] Almeida, J.P., Dijkman R., Ferreira Pires, L., QeaD.,
van Sinderen, M. Model-Driven Design, Refinemerd an
Transformation of Abstract Interactioimternational
Journal of Cooperative Information Systems, 180D6),
599-632.

[2] de Farias, C.R.GArchitectural Design of Groupware
Systems: a Component-Based Appro&tiD. Thesis.
University of Twente, Enschede, 2002.

[3] Dijkman, R., Dumas, M. Service-Oriented Design: Al
Viewpoint Approachlnternational Journal of Cooperative
Information Systems 13,(2004), 337-368.

[4] Erasala, N., Yen, D.C., and Rajkumar, T.M. Entesgri
Application Integration in the electronic commeveerid.
Computer Standards and Interface, (2002), 69-82.

[5] Johannesson, P. and Perjons, E. Design principies f
process modelling in enterprise application intégra
Information Systems, Z8001), 165-184.

[6] Klusch, M., Sycara, K. Brokering and Matchmaking fo
Coordination of Agent Societies: A Survey. In OmiciA. et
al. (eds.)Coordination of Internet AgenSpringer, 2001,
197-224.

[7] Lamsweerde, A. Goal-Oriented Requirement Engingedn
Guided Tour. IrProc. of the % IEEE Intl. Symp. on
Requirement Engineering (RE'QXYoronto, Canada, Aug.

27-31, 2001). IEEE Computer Society, Los Alamit©s,
2001, 249-263.

[8] Medjahed, B., Benatallah, B., Bouguettaya, A., Naud.H.,
and Elmagarmid, A.K. Business-to-business intevacti
issues and enabling technologi¢tDB Journal, 122003),
59-85.

[9] Pokraev, S., Quartel, D.A.C., Steen, M.W.A., Wonttsa¢c
A., and Reichert, M. Business Level Service-Oridnte
Enterprise Application Integration. Proc. of the ¥ Intl.
Conf. on Interoperability for Enterprise Softwaneda
Applications (I-ESA 2007Funchal, Portugal, Mar. 28-30,
2007). Springer Verlag, Berlin, 2007, 507-518.

[10] Pokraev, S., Reichert, M. Mediation Patterns fosbége
Exchange Protocols. roc. of CAISE'06 Workshops/Open
INTEROP Workshop on Enterprise Modelling and
Ontologies for Interoperability (EMOI-INTEROP)
(Luxembourg, June 5-9, 2006). Presses Universitaiee
Namur, 2006, 659-663.

[11] Quartel, D., Ferreira Pires, L., van Sinderen, M. O
Architectural Support for Behaviour Refinement in
Distributed Systems Desigfiransaction of the SPDS, 6, 1
(2002), 1-30.

[12] Quartel, D.A.C., Ferreira Pires, L., van Sindeidn].,
Franken, H.M., Vissers, C.A. On the role of bassign
concepts in behaviour structurir@omputer Networks and
ISDN Systems, 24997), 413-436.

[13] Quartel, D.A.C., Steen, M.W.A,, Pokraev, S., and va
Sinderen, M.J. COSMO: A conceptual framework fovee
modelling and refinemeninformation Systems Frontiers, 9
(Jul. 2007), 225-244.

[14] Rahm, E., Bernstein, P.A. A survey of approaches to
automatic schema matchingLDB Journal, 10(2001), 334-
350.

[15] Shaw, M. 1996. Procedure Calls Are the Assemblyguage
of Software Interconnection: Connectors Deservstfitass
Status. IrSelected Papers Frothe Workshop on Studies of
Software DesigifMay 17 - 18, 1993). LNCS, vol. 1078.
Springer-Verlag, London, 17-32.

[16] Shaw, M., DelLine, R., Zelesnik, G. Abstractions and
Implementations for Architectural ConnectionsPiroc. of
the 3% Intl. Conf. on Configurable Distributed Systems
(ICCDS '96) (1996), 2-10.

[17] van der Aalst, W.M.P. Inheritance of Interorganizal
Workflows to Enable Business-to-Business E-Commerce
Electronic Commerce Research, 2 (20025-231.

[18] van der Aalst, W.M.P., Weske, M. The P2P Approach t
Interorganizational Workflow. Iffroc. of the 1% Intl. Conf.
on Advanced Information Systems Engineering (CAIBE’
(Interlaken, Switzerland, June 4-8, 2001). LNCS, 2068.
Springer, Berlin, 140-156.

