
Designing Interaction Behaviour in Service-Oriented
Enterprise Application Integration

Teduh Dirgahayu
University of Twente

P.O. Box 217, 7500 AE Enschede
The Netherlands
+31 53 4894226

t.dirgahayu@ewi.utwente.nl

Dick Quartel
Telematica Instituut

P.O. Box 589, 7500 AN Enschede
The Netherlands
+31 53 4850451

dick.quartel@telin.nl

Marten van Sinderen
University of Twente

P.O. Box 217, 7500 AE Enschede
The Netherlands
+31 53 4893677

m.j.vansinderen@utwente.nl

ABSTRACT
In this paper we present an approach for designing interaction
behaviour in service-oriented enterprise application integration.
The approach enables business analysts to actively participate in
the design of an integration solution. In this way, we expect that
the solution meets its integration goal and business requirements.
The approach consists of four steps: (i) represent the existing
services to be integrated in platform-independent models; (ii)
derive the models of the goals and business requirements of the
services; (iii) check whether an abstract interaction representing
the integration goal may occur between the services; and (iv) if so,
(recursively) refine the interaction into a realisable design. The
approach is characterised by an early check on the possibility of
an integration solution, clear expressions of the integration goal
and business requirements, and explicit use of the descriptions of
the existing services as bottom-up knowledge during refinement.
To support the approach, we present a set of patterns of
interaction refinement as guidelines in refining abstract
interactions.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
languages, methodologies. H.1.1 [Models and Principles]:
Systems and Information Theory – general system theory.

General Terms
Design, Languages.

Keywords
Interaction behaviour, interaction design, service-oriented
computing, enterprise application integration.

1. INTRODUCTION
Service-oriented computing emerges as a promising paradigm to
support enterprise application integration (EAI) [4][8]. In this

paradigm, applications are represented as software services that
expose their external behaviour without revealing their internal
functions and structures. An integration solution is then specified
in terms of interactions between such services.

An interaction can be simple, e.g. sending a request for a product
catalogue from a retailer to a supplier, or complex, e.g. a
negotiation for a product’s price through an auction. A complex
interaction is composed of a number of simpler interactions
performing certain behaviour. We call such behaviour interaction
behaviour. When designing the behaviour of an integration
solution, designers have to take into account (i) the behaviour of
the existing services and (ii) the interaction behaviour between
those services. In many cases, the behaviour of the existing
services should be kept unmodified. The design of the behaviour
of an integration solution is hence the design of interaction
behaviour between those services.

In designing an integration solution, we should have an
integration goal and the descriptions of the existing services to be
integrated. The goal refers to the effect that is intended to be
established by the integration [7]. Related to the goal are the
business requirements of the services, which indicate what the
services require to achieve the goal. The goal and business
requirements are typically defined in a platform-independent
manner at a high abstraction level by business analysts. On the
other hand, the fact that service descriptions are technology-
specific, e.g. in IDL or WSDL, usually leads to the definition of
the integration solution at an implementation level by application
developers. Different domains, i.e. business and technology, and
the gap between a high abstraction level and an implementation
level may result in an integration solution that does not meet the
integration goal and business requirements [9].

The objective of this paper is to present an approach for designing
interaction behaviour in service-oriented EAI. The purpose of this
approach is to enable business analysts to actively participate in
the design of an integration solution. With such participation, we
expect that the integration solution meets its goal and business
requirements. To handle the gap between a high abstraction level
and an implementation level, the approach uses a design method
utilising multiple abstraction levels.

This paper is further structured as follows. Section 2 presents our
integration approach. Section 3 identifies patterns of interaction
refinement that can be useful in designing interaction behaviour at
multiple abstraction levels. Section 4 illustrates the application of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.
Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

the approach with an example. Section 5 discusses related work.
Finally, Section 6 concludes this paper and identifies future work.

2. APPROACH
In this section we propose an approach for designing interaction
behaviour in service-oriented EAI. We first describe design
concepts and a design method that are used by the approach.

2.1 Interaction Design Method
We define an interaction as a shared activity which involves
multiple participants to establish some common results or desired
effects. The participation of each participant is represented by an
interaction contribution, which defines the constraints it has on
the interaction results. An interaction can only occur if the
constraints of all participants are satisfied. In this case, a common
result is established (same for all, but possibly a participant may
not be interested in the complete results). An interaction either
occurs for all participants or does not occur. If the interaction
occurs, all participants can refer to the interaction results. If the
interaction does not occur, none of the participants can refer to
any (partial or temporal) result of the interaction.

To support multiple abstraction levels, we define the notion of
abstract interaction to represent a composition of interactions as a
single interaction at a higher abstraction level. An abstract
interaction concerns with (i) the results of the composition and (ii)
the constraints which should be satisfied by the results. In this
way, an abstract interaction represents the goal of the composition
abstracting from the way this goal is achieved.

In a top-down design process, an abstract interaction is meant to
be refined into a composition of (less) abstract interactions at a
lower abstraction level or to be mapped onto interaction
mechanisms supported by communication middleware. An
abstract interaction does not impose a certain interaction
behaviour design or certain interaction mechanisms. An
interaction behaviour design, however, should conform to the
abstract interaction it refines. The interaction behaviour design
should establish the results specified by the abstract interaction
without violating the constraints.

To support modelling with abstract interactions, we use
behavioural and information design concepts defined in the
COSMO framework [13], e.g. behaviour, activity, causality
condition, class, and constraint. Interaction results are represented
as information attributes. An information attribute has an
information type and will be assigned a value when the interaction
occurs.

Figure 1 graphically represents an abstract interaction named
purchase between a buyer and a seller service. Services are
represented as rounded rectangles. An interaction is represented as
segmented ellipses linked with a line. A segmented ellipse
represents the interaction contribution of a service. Information
attributes and constraints are written in boxes attached to their
corresponding interaction contributions. In the figure, the buyer
wants to buy a notebook for a maximal price of 900 euro. The
seller wants to sell any article listed in its catalogue with a
minimal price that depends on the particular article. If the
interaction occurs, it results in the purchase of a notebook at some
price that meets both constraints.

Figure 1. A purchase interaction between buyer and seller

The purchase of a notebook is the goal of this interaction. To
achieve this goal, the participants specify their business
requirements as interaction constraints. The buyer requires that
the seller has a notebook whose price is less than 900 euro. The
seller requires that the buyer selects an article from its catalogue
and agrees for a purchase price that is higher than the article’s
minimum price. Expressing the goal aspect of an interaction as
constraints on the interaction results has been discussed in [13].

In an interaction involving two participants, each interaction
contribution should specify the same set of information attributes.
In an interaction involving more than two participants, a
participant may be interested only in some part of the results.
Thus each interaction contribution does not necessarily specify
the same set of information attributes. In this case, an information
attribute should be specified in at least two interaction
contributions. An interaction is possible or may occur if the
intersection of the constraints of each information attribute
produces a non-empty set. The purchase interaction in Figure 1
may occur if the seller has a notebook in its catalogue with a
minimum price less than 900 euro.

We explain the design method with an example. Suppose that we
have a purchase interaction as in Figure 1. Since the interaction
cannot be realised with any available interaction mechanism, we
apply the design method to refine the interaction into a set of
(less) abstract interactions at a lower abstraction level, i.e.
selection, payment, and delivery, which are to be performed in
sequence. Figure 2 shows the refinement result. The buyer and the
seller are refined into buyer’ and seller’ respectively, because it is
the responsibility of the services to determine the order of those
interactions. Information attributes and constraints may also need
to be refined. If an interaction at this abstraction level still cannot
be mapped onto available interaction mechanisms, the design
method is (recursively) applied to that interaction. Different
patterns of interaction refinement are possible. We list them in
Section 3.

Figure 2. Refinement of the purchase interaction (Pattern 1)

2.2 Integration Approach
Our integration approach assumes that the existing services to be
integrated have been identified. The approach consists of the
following steps.

1. Represent the services in platform-independent models. The
models are useful for understanding the behaviour of the
services, including the way to interact with the services. The
models are also useful for identifying (i) information required
and produced by the services and (ii) constraints that must be
satisfied to interact with the services. Platform-independent
models allow business analysts to participate in the design of
an integration solution.

2. Derive the models of the goals and business requirements of
the services. This is done by abstracting the platform-
independent models from the way to interact with the services.
This step results in models at a higher abstraction level. Each
model has only one interaction contribution that clearly
represents the goal and requirements of each service. This step
includes abstraction of information attributes and constraints.
We refer to [13] for information and constraints abstraction.
The models allow business analysts to focus on the
information attributes and constraints specified by each
service.

3. Check whether an interaction between the services is possible.
First, the models are linked to form an abstract interaction
representing the integration goal. Then, the check is applied
on the information attributes and constraints of the
interaction. If the interaction is not possible, we conclude that
it is impossible to integrate the services. The integration
solution should be redesigned from the start by identifying
existing services that should involve in the integration.
Alternatively, the existing services should be modified to
make the interaction possible.

4. If the interaction is possible, (recursively) refine the abstract
interaction. The business analysts should bear in mind that the
purpose of the refinement is to eventually enable interactions
between models obtained in Step 1. These models of service
descriptions constrain the refinement. Patterns of interaction
refinement (presented in Section 3) can be used as guidelines
in refining an interaction. When the design resulted from the
refinement is detailed enough to be realised, application
developers take over and realise the design in some
implementation platform.

The integration approach offers three main benefits. First, at a
high abstraction level, business analysts can early check whether
an integration solution may exist (Step 3). Doing so avoids trial-
and-error attempts at an implementation level that may end up
with a conclusion saying that an integration solution is
impossible. Hence, the approach potentially saves time and
efforts.

Second, the approach clearly expresses the integration goal and
business requirements (Step 2 and 3). Clear expressions of the
integration goal and business requirements allow an assessment
on whether an integration solution meets its goal and business
requirements.

Third, the approach explicitly uses the descriptions of the existing
services as bottom-up knowledge during refinement of abstract

interactions (Step 4). Such bottom-up knowledge constrains the
refinement to ensure that the integration solution can be mapped
onto existing services. Without such knowledge, refinement may
result in a design of an integration solution that cannot be mapped
onto existing services or that requires modification of the existing
services.

3. REFINEMENT PATTERNS
In this section we identify some basic patterns of interaction
refinement. Each pattern is presented with an example. The
information attributes and constraints of an abstract interaction
may need to be refined and distributed over a set of (less) abstract
interactions. Due to space limitation, we do not show information
attributes and constraints in figures. In refinement, multiple
patterns can be applied at the same time.

In order to assess conformance, we adopt a method for assessing
conformance of designs that use the concepts of the COSMO
framework. The method is based on calculating the abstraction of
a design (i.e., abstracting from the design details that have been
added) and comparing this abstraction to the original design. For
this method, abstraction rules have been defined [11][12][13]

We assume that the occurrence of an abstract interaction
corresponds to the occurrence of a number of (less) abstract
interactions at a lower abstraction level. A (less) abstract
interaction that corresponds to the abstract interaction is called a
reference activity. The results specified by the abstract interaction
can be referred only after the occurrence of the reference activity.
A (less) abstract interaction that is not a reference activity is called
an inserted activity [13]. For each pattern, we indicate which
interactions are reference and inserted activities. Detailed
conformance assessment is beyond the scope of this paper.

Pattern 1: Decomposition into a set of interactions

An abstract interaction between two services is refined by
decomposing it into a set of related (less) abstract interactions.
Figure 2 shows a model resulted from the application of this
pattern on the abstract interaction in Figure 1. Different
relationships between the (less) abstract interactions are possible,
e.g. choice and concurrency. This pattern can be found in [2][13].

The delivery interaction in Figure 2 is the reference activity
corresponding to the abstract purchase interaction in Figure 1.
The select and payment interactions are inserted activities.

Pattern 2: Introduction of peer services

An abstract interaction is refined by introducing a number of peer
services into the interaction. It results in a (less) abstract
interaction whose participants are the original services and the
newly-introduced peer services. A participant is not necessarily
interested (and therefore does not participate) in all information
attribute.

Figure 3 illustrates this pattern. A purchase interaction is basically
done between a buyer and a seller. In purchasing expensive and
high-risk products e.g. shares of a company, the buyer may want
to introduce its financial advisor in the interaction. As a result, the
refined purchase’ interaction has three participants: buyer’,
seller’, and advisor. They are all involved in the same interaction,
but possibly they are not involved in all information attributes.
Since the abstract purchase interaction is refined into a single
interaction, the purchase’ interaction is the reference activity.

Figure 3. Introduction of peer services (Pattern 2)

Pattern 3: Introduction of an intermediary service

An abstract interaction is refined by introducing an intermediary
service that defines the behaviour of the abstract interaction. Each
original service then interacts only with the intermediary service.
The intermediary service defines the relationships between those
interactions.

In contrast to Pattern 2, this pattern eliminates direct interactions
between original services. This pattern is useful for refining an
abstract interaction involving more than two participants into a
realisable design because most available interaction mechanisms
support two participants only. This pattern can be found in [1].

Figure 4 illustrates this pattern. A payment interaction between a
buyer and a seller is refined by introducing a bank that provides a
money transfer service. The buyer and seller are refined into
buyer’ and seller’ respectively. To transfer a sum of money as
payment, the buyer’ does a send interaction with the bank. Then
the bank does a notification interaction with the seller’ to notify
that a sum of money has been added to the seller’s account. There
is no direct interaction between buyer’ and seller’. The
notification interaction is the reference activity. The send
interaction is an inserted activity.

Figure 4. Introduction of an intermediary service (Pattern 3)

Pattern 4: Distribution over pairs of services

An abstract interaction involving more than two participants is
refined into a set of (less) abstract interactions that are distributed
over pairs of participants. As Pattern 3, this pattern is useful for
refining an abstract interaction into a realisable design. This
pattern can be found in [2].

Figure 5 illustrates this pattern. A delivery interaction has three
participants: seller, buyer, and courier. The interaction is refined
into a number of (less) abstract interactions, i.e. the delivery
notification interaction between seller’ and buyer’, the product
handing interaction between seller’ and courier’, and the product
delivery interaction between courier’ and buyer’. The product
delivery interaction is the reference activity. The delivery
notification and product handing interactions are inserted
activities.

Figure 5. Distribution over pairs of services (Pattern 4)

4. EXAMPLE
To illustrate the application of our integration approach, we apply
the approach on an integration case based on an integration
scenario presented in the SWS challenge1. In this case, we
integrate the ordering application of a customer called Blue with
an order management (OM) application of a manufacturer called
Moon. The behaviour of these services is given by the scenario.

Step 1. We model in a platform-independent manner the
applications as services. Figure 6 shows the model of Blue’s
ordering application as a service. The service uses two interaction
contributions, namely sendPO and receivePOC, to interact with
its business partner. They represent the sending of a purchase
order (PO) and the receipt of the purchase order confirmation
(POC), respectively. A PO consists of a customer’s name (cust)
and a list of items to be ordered (items). A POC consists of the PO
(cust and items) it corresponds to and the order status (status).

����

�������

	
�

���

	

������������������������

���������	
������

�����������	
������

��������������������������

���������

Figure 6. Blue's ordering system

Figure 7 shows the model of Moon’s OM application as a service.
To place an order, first an order must be created (through create
order interaction contribution), then the items to be ordered are
added one-by-one (add item), and finally the order are closed
(close order). The service then sends back a confirmation for each
ordered item (confirm item). The service uses a customer ID (cID)
to create an order and each order is given an order ID (oID).

Step 2. We derive the goals and business requirements of the
services by abstracting the obtained models. In Blue’s service, the
information attribute includes the customer’s name, the list of
items to be ordered, and the summary of the order status. In
Moon’s OM service, the information attributes includes the
customer ID, a list of items to be ordered, and a list of status. The
information attributes abstract from the order ID because order ID
is meaningful for Moon’s OM service only. It is generated and
consumed by Moon’s OM service.

1 http://sws-challenge.org/

Figure 7. Moon's order management system

Step 3. We link the abstract services to form an abstract
interaction as shown in Figure 8. We then check whether the
interaction is possible. After checking, we conclude that the
interaction is not possible because Moon’s OM service requires
information about customer ID, while Blue’s system does not
supply it. No integration solution may exist.

Figure 8. Linking abstract models

We do not want to modify the existing services. Further
identification of existing services that are required indicates that
Moon’s customer relationship management (CRM) application
should involve in the integration solution. Moon’s CRM service
returns the customer ID of a given customer name. Figure 9 shows
a new abstract interaction for the integration solution. After
checking the information attributes and constraints of the
interaction, we conclude that the interaction is now possible.

Step 4. We refine the abstract interaction. We have two options:
to apply Pattern 3 or Pattern 4. Considering the models obtained
from Step 1, we apply Pattern 3 and produce a design at a lower
abstraction level as shown in Figure 10. Information attributes and
constraints are omitted for brevity. We introduce an intermediary
service called Mediator between the original services. Mediator
service is responsible for receiving a PO sent by Blue’s service,
searching in Moon’s CRM service for the customer ID of the

customer name indicated in the PO, placing an order in Moon’s
OM service, and then sending back a POC to Blue’s service.
Observe that we apply also Pattern 1 to the interaction between
Blue and Mediator.

Figure 9. Moon’s CRM service is now included

Figure 10. An introduction of Mediator as an intermediary

Further refinement (using Pattern 1) on the interaction between
Mediator and Moon’s OM service results in a design shown in
Figure 11. The refinement is intended to enable Mediator service
to interact with concrete Moon’s OM service shown in Figure 7.
For this, the Mediator’s behaviour should match with the
interaction contributions defined in Moon’s OM service.

5. RELATED WORK
The existence of an integration solution depends on many
interoperability issues. Issues that are related to this paper are
data mismatches and behaviour mismatches [9]. Several
approaches have been proposed to solve these issues without
modifying existing services, e.g. approaches listed in [6][10][14].
However, the absence of information cannot be solved without
modifying existing services to provide the required information or
to relax interaction constraints. In our approach, the absence of
information is represented by the intersection of the constraints of
the interaction’s information attributes producing an empty set.

Figure 11. The integration solution

Therefore, we consider that our approach’s check on the existence
of an integration solution is fundamental. Approaches for solving
any data mismatches or behaviour mismatches can be applied only
if the check indicates that an integration solution may exist.

Another approach to service-oriented EAI is presented in [9]. The
approach defines two abstraction levels, namely business services
and information technology (IT) services; and consists of three
steps: (i) lifting IT service descriptions to business service
descriptions, (ii) solving the integration problem at business
services level, and (iii) deriving an IT integration solution from
the business integration solution. Our integration approach
extends this approach in three ways. First, our approach allows
business analysts to check whether services can be integrated
before designing an integration solution. Second, our approach
captures goals and business requirements in the designs. Third,
our approach allows business analysts to define as many
abstraction levels as necessary.

An approach for designing an integration solution at multiple
abstraction levels can also be found in [5]. At the very first step,
the approach considers an integration solution as a broker or
intermediary service. Hence, the approach limits itself to
modelling integration solutions that are based on a ‘hub-and-
spoke’ architecture [4]. Our integration approach can be used to
design an integration solution that is based on a ‘hub-and-spoke’
(Pattern 3) or a ‘point-to-point’ architecture (Pattern 4).

EAI can be seen as a way to enable interorganisational workflows
[17]. Approaches presented in [3][18] first define a common
workflow to be shared by several business partners and then map
pieces of the workflow onto those partners. The mapping
produces a set of interfaces; each of which should be implemented
by the corresponding partner. In service-oriented computing,
these interfaces define the partners’ service descriptions. These
approaches (and also the approach in [5] that we discussed
earlier) are purely top-down approaches that do not consider
functionality that might already be available at the business
partners. Our approach combines a top-down approach with the
use of bottom-up knowledge in order to ensure that an integration
solution can be mapped onto existing services.

6. CONCLUSION
We have presented an approach for designing interaction
behaviour in service-oriented EAI. The purpose of this approach
is to enable active participation of business analysts in the design
of an integration solution. We expect that active participation of
business analysts leads to integration solutions that better meet
integration goals and business requirements. The approach uses
an interaction design method that supports multiple abstraction
levels. The approach can be characterised by its benefits, i.e. (i) an
early check whether an integration solution may exist, (ii) clear
expressions of the integration goal and business requirements, and
(iii) explicit use of the descriptions of the existing services as
bottom-up knowledge in refinement. To support the approach, we
identify a set of patterns of interaction refinement.

As in [15][16], our approach basically considers interactions as
first-class entities. It would be easier to handle a complex
interaction in an abstract way and refine the interaction later when
some details become essential for its design. By considering an
interaction as a first-class entity, an interaction can be a starting

point for refinement. In this way, we expect that the refinement
results in matched sets of interaction contributions in the
participants. If interactions are not considered as first-class
entities, interaction refinement is done only as a consequence of
the refinement of its interaction contributions. Such refinement
potentially results in a set of interaction contributions in one
participant that do not match with a set of interaction
contributions in another participant. Furthermore, it offers only
two patterns of interaction refinement, i.e. Patterns 1 and 4.

The integration approach combines a top-down design approach
with bottom-up knowledge. A top-down design approach
gradually transforms the integration goal and business
requirements into designs that are detailed enough to be realised.
In this way, we expect that the integration solution meets its goal
and business requirements. Bottom-up knowledge constrains the
refinement of an abstract interaction. By considering such
knowledge during a design process, we expect that the integration
solution can be mapped onto existing services.

In this paper, we have identified some patterns of interaction
refinement. Our future work will be the development of specific
conformance assessment rules for the patterns. In these rules, we
will also include time attributes of an interaction. Constraints on
time attributes determine when and how long an interaction may
occur. Furthermore, we will apply our approach to more cases in
order to evaluate its usability.

7. ACKNOWLEDGMENTS
This work is part of the Freeband A-MUSE project (http://a-
muse.freeband.nl), which is sponsored by the Dutch government
under contract BSIK 03025.

8. REFERENCES
[1] Almeida, J.P., Dijkman R., Ferreira Pires, L., Quartel, D.,

van Sinderen, M. Model-Driven Design, Refinement and
Transformation of Abstract Interaction. International
Journal of Cooperative Information Systems, 15, 4 (2006),
599-632.

[2] de Farias, C.R.G. Architectural Design of Groupware
Systems: a Component-Based Approach. PhD. Thesis.
University of Twente, Enschede, 2002.

[3] Dijkman, R., Dumas, M. Service-Oriented Design: A Multi-
Viewpoint Approach. International Journal of Cooperative
Information Systems 13, 4 (2004), 337-368.

[4] Erasala, N., Yen, D.C., and Rajkumar, T.M. Enterprise
Application Integration in the electronic commerce world.
Computer Standards and Interface, 25 (2002), 69-82.

[5] Johannesson, P. and Perjons, E. Design principles for
process modelling in enterprise application integration.
Information Systems, 26 (2001), 165-184.

[6] Klusch, M., Sycara, K. Brokering and Matchmaking for
Coordination of Agent Societies: A Survey. In Omicini, A. et
al. (eds.). Coordination of Internet Agent. Springer, 2001,
197-224.

[7] Lamsweerde, A. Goal-Oriented Requirement Engineering: A
Guided Tour. In Proc. of the 5th IEEE Intl. Symp. on
Requirement Engineering (RE’01), (Toronto, Canada, Aug.

27-31, 2001). IEEE Computer Society, Los Alamitos, CA,
2001, 249-263.

[8] Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A.H.H.,
and Elmagarmid, A.K. Business-to-business interactions:
issues and enabling technologies. VLDB Journal, 12 (2003),
59-85.

[9] Pokraev, S., Quartel, D.A.C., Steen, M.W.A., Wombacher,
A., and Reichert, M. Business Level Service-Oriented
Enterprise Application Integration. In Proc. of the 3rd Intl.
Conf. on Interoperability for Enterprise Software and
Applications (I-ESA 2007) (Funchal, Portugal, Mar. 28-30,
2007). Springer Verlag, Berlin, 2007, 507-518.

[10] Pokraev, S., Reichert, M. Mediation Patterns for Message
Exchange Protocols. In Proc. of CAiSE'06 Workshops/Open
INTEROP Workshop on Enterprise Modelling and
Ontologies for Interoperability (EMOI-INTEROP)
(Luxembourg, June 5-9, 2006). Presses Universitaires de
Namur, 2006, 659-663.

[11] Quartel, D., Ferreira Pires, L., van Sinderen, M. On
Architectural Support for Behaviour Refinement in
Distributed Systems Design. Transaction of the SPDS, 6, 1
(2002), 1-30.

[12] Quartel, D.A.C., Ferreira Pires, L., van Sinderen, M.J.,
Franken, H.M., Vissers, C.A. On the role of basic design
concepts in behaviour structuring. Computer Networks and
ISDN Systems, 29 (1997), 413-436.

[13] Quartel, D.A.C., Steen, M.W.A., Pokraev, S., and van
Sinderen, M.J. COSMO: A conceptual framework for service
modelling and refinement. Information Systems Frontiers, 9
(Jul. 2007), 225-244.

[14] Rahm, E., Bernstein, P.A. A survey of approaches to
automatic schema matching. VLDB Journal, 10 (2001), 334-
350.

[15] Shaw, M. 1996. Procedure Calls Are the Assembly Language
of Software Interconnection: Connectors Deserve First-Class
Status. In Selected Papers From the Workshop on Studies of
Software Design (May 17 - 18, 1993). LNCS, vol. 1078.
Springer-Verlag, London, 17-32.

[16] Shaw, M., DeLine, R., Zelesnik, G. Abstractions and
Implementations for Architectural Connections. In Proc. of
the 3rd Intl. Conf. on Configurable Distributed Systems
(ICCDS '96), (1996), 2-10.

[17] van der Aalst, W.M.P. Inheritance of Interorganizational
Workflows to Enable Business-to-Business E-Commerce.
Electronic Commerce Research, 2 (2002), 195-231.

[18] van der Aalst, W.M.P., Weske, M. The P2P Approach to
Interorganizational Workflow. In Proc. of the 13th Intl. Conf.
on Advanced Information Systems Engineering (CAiSE’01),
(Interlaken, Switzerland, June 4-8, 2001). LNCS, vol. 2068.
Springer, Berlin, 140-156.

