skip to main content
10.1145/1364901.1364915acmconferencesArticle/Chapter ViewAbstractPublication PagesspmConference Proceedingsconference-collections
research-article

Interactive physically-based shape editing

Published:02 June 2008Publication History

ABSTRACT

We present an alternative approach to standard geometric shape editing using physically-based simulation. With our technique, the user can deform complex objects in real-time. The basis of our method is formed by a fast and accurate finite element implementation of an elasto-plastic material model, specifically designed for interactive shape manipulation. Using quadratic shape functions, we reduce approximation errors inherent to methods based on linear finite elements. The physical simulation uses a volume mesh comprised of quadratic tetrahedra, which are constructed from a coarser approximation of the detailed surface. In order to guarantee stability and real-time frame rates during the simulation, we cast the elasto-plastic problem into a linear formulation. For this purpose, we present a corotational formulation for quadratic finite elements. We demonstrate the versatility of our approach in interactive manipulation sessions and show that our animation system can be coupled with further physics-based animations like, e.g. fluids and cloth, in a bi-directional way.

References

  1. Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-Rigid-As-Possible Shape Interpolation. In Proc. ACM SIGGRAPH, 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alexa, M. 2003. Differential coordinates for mesh morphing and deformation. The Visual Computer 19, 2, 105--114.Google ScholarGoogle ScholarCross RefCross Ref
  3. Auricchio, F., and Da Veiga, L. B. 2003. On a new integration scheme for von-Mises plasticity with linear hardening. International Journal for Numerical Methods in Engineering 56, 10, 1375--1396.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bargteil, A. W., Wojtàn, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3, article no. 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Botsch, M., and Kobbelt, L. 2004. An intuitive framework for real-time freeform modeling. ACM Trans. Graph. 23, 3, 630--634. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Botsch, M., and Sorkine, O. 2008. On Linear Variational Surface Deformation Methods. IEEE Trans. Vis. Graph. 14, 1, 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive Space Deformations Based on Rigid Cells. In Proc. Eurographics.Google ScholarGoogle Scholar
  8. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 3, 586--593. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dewaele, G., and Cani, M.-P. 2003. Interactive Global and Local Deformations for Virtual Clay. In Proc. Pacific Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hauth, M., and Strasser, W. 2004. Corotational Simulation of Deformable Solids. In Proc. WSCG, 137--145.Google ScholarGoogle Scholar
  11. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bad, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3, 1126--1134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. ACM Symp. Comp. Animation (SCA), 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. James, D. L., and Pai, D. K. 1999. ArtDefo: Accurate real time deformable objects. In Proc. ACM SIGGRAPH, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric Modeling in Shape Space. ACM Trans. Graph. 26, 3, article no. 64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kobbelt, L., Campagna, S., Vorsatz, J., and Seidel, H.-P. 1998. Interactive Multi-Resolution Modeling on Arbitrary Meshes. Computer Graphics (Proc. ACM SIGGRAPH) 32, 105--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24, 3, 479--187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lipman, Y., Cohen-Or, D., Gal, R., and Levin, D. 2007. Volume and shape preservation via moving frame manipulation. ACM Trans. Graph. 26, 1, article no. 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mezger, J., and Strasser, W. 2006. Interactive Soft Object Simulation with Quadratic Finite Elements. In Articulated Motion and Deformable Objects (AMDO), vol. 4069 of LNCS, 434--443. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Müller, M., and Gross, M. 2004. Interactive Virtual Materials. In Proc. Graphics Interface, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Picinbono, G., Delingette, H., and Ayache, N. 2000. Real-Time Large Displacement Elasticity for Surgery Simulation: Non-linear Tensor-Mass Model. In MICCAI, 643--652. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Rappaport, A., Sheffer, A., and Bercovier, M. 1996. Volume-preserving free-form solids. IEEE Trans. Vis. Comp. Graph. 2, 1, 19--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Roth, S. H. M., Gross, M. H., Turello, S., and Carls, F. R. 1998. A Bernstein-Bézier Based Approach to Soft Tissue Simulation. CGF 17, 3, 285--294.Google ScholarGoogle ScholarCross RefCross Ref
  24. Sheffer, A., and Kraevoy, V. 2004. Pyramid Coordinates for Morphing and Deformation. In Proc. 3D Data Processing, Visualization, and Transmission, 68--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rossl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Symp. Geometry processing (SGP), 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Steinemann, D., Otaduy, M. A., and Gross, M. 2006. Fast arbitrary splitting of deforming objects. In ACM Symp. Comp. Animation (SCA), 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Stroud, A. H. 1971. Approximate Calculation of Multiple Integrals. Prentice-Hall, Inc.Google ScholarGoogle Scholar
  28. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. Computer Graphics (Proc. ACM SIGGRAPH) 22, 4, 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Von Funck, W., Theisel, H., and Seidel, H.-P. 2006. Vector field based shape deformations. ACM Trans. Graph. 25, 3, 1118--1125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Von Funck, W., Theisel, H., and Seidel, H.-P. 2007. Explicit Control of Vector Field Based Shape Deformations. In Proc. of Pacific Graphics, 291--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23, 3, 644--651. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. 2005. Large mesh deformation using the volumetric graph Laplacian. ACM Trans. Graph. 24, 3, 496--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Zienkiewicz, O. C., and Taylor, R. L. 2000. The Finite Element Method, fifth ed., vol. 1 and 2. Butterworth-Heinemann.Google ScholarGoogle Scholar
  34. Zorin, D., Schröder, P., and Sweldens, W. 1997. Interactive multiresolution mesh editing. In Proc. ACM SIGGRAPH, 256--268. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Interactive physically-based shape editing

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SPM '08: Proceedings of the 2008 ACM symposium on Solid and physical modeling
          June 2008
          423 pages
          ISBN:9781605581064
          DOI:10.1145/1364901

          Copyright © 2008 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 June 2008

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader