skip to main content
10.1145/1364901.1364916acmconferencesArticle/Chapter ViewAbstractPublication PagesspmConference Proceedingsconference-collections
research-article

Accelerated wave-based acoustics simulation

Published:02 June 2008Publication History

ABSTRACT

We present an efficient technique to model sound propagation accurately in an arbitrary 3D scene by numerically integrating the wave equation. We show that by performing an offline modal analysis and using eigenvalues from a refined mesh, we can simulate sound propagation with reduced dispersion on a much coarser mesh, enabling accelerated computation. Since performing a modal analysis on the complete scene is usually not feasible, we present a domain decomposition approach to drastically shorten the pre-processing time. We introduce a simple, efficient and stable technique for handling the communication between the domain partitions. We validate the accuracy of our approach against cases with known analytical solutions. With our approach, we have observed up to an order of magnitude speedup compared to a standard finite-difference technique.

References

  1. Alford, R. M., Kelly, K. R., and Boore, D. M. 1974. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics 39, 6, 834--842.Google ScholarGoogle ScholarCross RefCross Ref
  2. Allen, J. B., and Berkley, D. A. 1979. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am 65, 4, 943--950.Google ScholarGoogle ScholarCross RefCross Ref
  3. Antonacci, F., Foco, M., Sarti, A., and Tubaro, S. 2004. Real time modeling of acoustic propagation in complex environments. Proceedings of 7th International Conference on Digital Audio Effects, 274--279.Google ScholarGoogle Scholar
  4. Bertram, M., Deines, E., Mohring, J., Jegorovs, J., and Hagen, H. 2005. Phonon tracing for auralization and visualization of sound. In IEEE Visualization 2005.Google ScholarGoogle Scholar
  5. Botteldooren, D. 1994. Acoustical finite-difference time-domain simulation in a quasi-cartesian grid. The Journal of the Acoustical Society of America 95, 5, 2313--2319.Google ScholarGoogle ScholarCross RefCross Ref
  6. Botteldooren, D. 1995. Finite-difference time-domain simulation of low-frequency room acoustic problems. Acoustical Society of America Journal 98 (December), 3302--3308.Google ScholarGoogle ScholarCross RefCross Ref
  7. DDM. http://www.ddm.org.Google ScholarGoogle Scholar
  8. Deines, E., Michel, F., Bertram, M., Hagen, H., and Nielson, G. 2006. Visualizing the phonon map. In Eurovis. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Funkhouser, T., Tsingos, N., and Jot, J.-M. 2003. Survey of methods for modeling sound propagation in interactive virtual environment systems. Presence and Teleoperation.Google ScholarGoogle Scholar
  10. Funkhouser, T., Tsingos, N., Carlbom, I., Elko, G., Sondhi, M., West, J. E., Pingali, G., Min, P., and Ngan, A. 2004. A beam tracing method for interactive architectural acoustics. The Journal of the Acoustical Society of America 115, 2, 739--756.Google ScholarGoogle ScholarCross RefCross Ref
  11. Karjalainen, M., and Erkut, C. 2004. Digital waveguides versus finite difference structures: equivalence and mixed modeling. EURASIP J. Appl. Signal Process. 2004, 1 (January), 978--989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Karypis, G., and Kumar, V. 1999. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20, 1, 359--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V. 1999. Fundamentals of Acoustics. Wiley, December.Google ScholarGoogle Scholar
  14. Kleiner, M., Dalenbck, B.-I., and Svensson, P. 1993. Au-ralization - an overview. JAES 41, 861--875.Google ScholarGoogle Scholar
  15. Krockstadt, U. 1968. Calculating the acoustical room response by the use of a ray tracing technique. Journal of Sound Vibration.Google ScholarGoogle ScholarCross RefCross Ref
  16. Kuttruff, H. 2000. Room Acoustics. Taylor & Francis, October.Google ScholarGoogle Scholar
  17. Lehoucq, R., Sorensen, D., and Yang, C. 1997. Arpack users' guide: Solution of large scale eigenvalue problems with implicitly restarted arnoldi methods. Tech. rep.Google ScholarGoogle Scholar
  18. Lokki, T. 2002. Physically-based Auralization. PhD thesis, Helsinki University of Technology.Google ScholarGoogle Scholar
  19. Min, P., and Funkhouser, T. 2000. Priority-driven acoustic modeling for virtual environments. In EUROGRAPHICS 2000.Google ScholarGoogle Scholar
  20. Murphy, D., Kelloniemi, A., Mullen, J., and Shelley, S. 2007. Acoustic modeling using the digital waveguide mesh. Signal Processing Magazine, IEEE 24, 2, 55--66.Google ScholarGoogle ScholarCross RefCross Ref
  21. O'Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In The ACM SIGGRAPH 2002 Symposium on Computer Animation, ACM Press, 175--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Raghuvanshi, N., and Lin, M. C. 2006. Interactive sound synthesis for large scale environments. In SI3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, ACM Press, New York, NY, USA, 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rindel, J. H. The use of computer modeling in room acoustics.Google ScholarGoogle Scholar
  24. Sabine, H. 1953. Room acoustics. Audio, Transactions of the IRE Professional Group on 1, 4, 4--12.Google ScholarGoogle ScholarCross RefCross Ref
  25. Sakamoto, S., Yokota, T., and Tachibana, H. 2004. Numerical sound field analysis in halls using the finite difference time domain method. In RADS 2004.Google ScholarGoogle Scholar
  26. Sakamoto, S., Ushiyama, A., and Nagatomo, H. 2006. Numerical analysis of sound propagation in rooms using the finite difference time domain method. The Journal of the Acoustical Society of America 120, 5, 3008--3008.Google ScholarGoogle ScholarCross RefCross Ref
  27. Savioja, L., Rinne, T., and Takala, T. 1994. Simulation of room acoustics with a 3-d finite difference mesh. Proc. Int. Computer Music Conf, 463--466.Google ScholarGoogle Scholar
  28. Savioja, L., Backman, J., Jrvinen, A., and Takala, T. 1995. Waveguide mesh method for low-frequency simulation of room acoustics. In 15th International Congress on Acoustics (ICA '95), vol. 2, 637--640.Google ScholarGoogle Scholar
  29. Savioja, L. 1999. Modeling Techniques for Virtual Acoustics. Doctoral thesis, Helsinki University of Technology, Telecommunications Software and Multimedia Laboratory, Report TMLA3.Google ScholarGoogle Scholar
  30. Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uni form theory of diffraction. In Computer Graphics (SIGGRAPH 2001). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Tsingos, N., Dachsbacher, C., Lefebvre, S., and Dellepiane, M. 2007. Instant sound scattering. In Rendering Techniques (Proceedings of the Eurographics Symposium on Rendering). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Van Den Doel, K., Kry, P. G., and Pai, D. K. 2001. Foleyautomatic: physically-based sound effects for interactive simulation and animation. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM Press, New York, NY, USA, 537--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Van Duyne, S., and Smith, J. O. 1993. The 2-d digital waveguide mesh. In Applications of Signal Processing to Audio and Acoustics, 1993. Final Program and Paper Summaries., 1993 IEEE Workshop on, 177--180.Google ScholarGoogle Scholar

Index Terms

  1. Accelerated wave-based acoustics simulation

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              SPM '08: Proceedings of the 2008 ACM symposium on Solid and physical modeling
              June 2008
              423 pages
              ISBN:9781605581064
              DOI:10.1145/1364901

              Copyright © 2008 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 2 June 2008

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader