skip to main content
10.1145/1368310.1368326acmconferencesArticle/Chapter ViewAbstractPublication Pagesasia-ccsConference Proceedingsconference-collections
research-article

Computationally sound mechanized proofs for basic and public-key Kerberos

Published:18 March 2008Publication History

ABSTRACT

We present a computationally sound mechanized analysis of Kerberos 5, both with and without its public-key extension PKINIT. We prove authentication and key secrecy properties using the prover CryptoVerif, which works directly in the computational model; these are the first mechanical proofs of a full industrial protocol at the computational level. We also generalize the notion of key usability and use CryptoVerif to prove that this definition is satisfied by keys in Kerberos.

References

  1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of formal encryption). In First IFIP, volume 1872 of LNCS. Springer, Aug. 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-Based Authenticated Key Exchange in the Three-Party Setting. IEE Proc. Information Security, 153(1), 2006.Google ScholarGoogle Scholar
  3. A. Armando et al. The Avispa tool for the automated validation of internet security protocols and applications. In CAV 2005, volume 3576 of LNCS. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Cryptographically Sound Security Proofs for Basic and Public-key Kerberos. In ESORICS 2006, volume 4189 of LNCS. Springer, September 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Backes, B. Pfitzmann, and M. Waidner. A Composable Cryptographic Library with Nested Operations. In CCS'03. ACM, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. G. Bella and L. C. Paulson. Using Isabelle to Prove Properties of the Kerberos Authentication System. In DIMACS'97, Workshop on Design and Formal Verification of Security Protocols (CD-ROM), 1997.Google ScholarGoogle Scholar
  7. G. Bella and L. C. Paulson. Kerberos Version IV: Inductive Analysis of the Secrecy Goals. In ESORICS'98, volume 1485 of LNCS. Springer, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In CRYPTO'96, volume 1109 of LNCS. Springer, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. In ASIACRYPT 2000, volume 1976 of LNCS. Springer, December 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. M. Bellovin and M. Merritt. Limitations of the Kerberos Authentication System. In USENIX Conference Proceedings, Winter 1991.Google ScholarGoogle Scholar
  11. B. Blanchet. A computationally sound mechanized prover for security protocols. IEEE Transactions on Dependable and Secure Computing. To appear. Technical report version available at http://eprint.iacr.org/2005/401. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In CSFW-14, June 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. B. Blanchet. A Computationally Sound Mechanized Prover for Security Protocols. In IEEE Symposium on Security and Privacy, May 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. B. Blanchet. Computationally sound mechanized proofs of correspondence assertions. In CSF 2007, July 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. B. Blanchet and D. Pointcheval. Automated Security Proofs with Sequences of Games. In CRYPTO 2006, volume 4117 of LNCS. Springer, Aug. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Boldyreva and V. Kumar. Provable-security analysis of authenticated encryption in Kerberos. In IEEE Symp. Security and Privacy, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad. Formal Analysis of Kerberos 5. Theoretical Computer Science, 367(1--2), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authentication and key exchange protocols. In TCC'06, volume 3876 of LNCS. Springer, March 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Breaking and fixing public-key Kerberos. Information and Computation, FCS-ARSPA'06 Special Issue. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. V. Cortier and B. Warinschi. Computationally sound, automated proofs for security protocols. In ESOP'05, volume 3444 of LNCS. Springer, Apr. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Datta, J. Mitchell, and B. Warinschi. Computationally Sound Compositional Logic for Key Exchange Protocols. In CSFW'06, July 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular correctness proof of TLS and IEEE 802.11i. In CCS'05. ACM, November 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. IETF. Public Key Cryptography for Initial Authentication in Kerberos, 1996--2006. RFC 4556. Preliminary versions available as a sequence of Internet Drafts at http://tools.ietf.org/wg/krb-wg/draft-ietf-cat-kerberos-pk-init/.Google ScholarGoogle Scholar
  24. A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Computationally Sound Mechanized Proof of PKINIT for Kerberos. Abstract presented at FCC'07.Google ScholarGoogle Scholar
  25. P. Laud. Secrecy Types for a Simulatable Cryptographic Library. In CCS 2005, May 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for protocol analysis. In CCS-5, November 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic polynomial-time equivalence and security protocols. In FM'99, volume 1708 of LNCS. Springer, Sept. 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol using FDR. In TACAS'96, volume 1055 of LNCS. Springer, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. C. Meadows. Analysis of the Internet Key Exchange Protocol using the NRL Protocol Analyzer. In IEEE Symp. Security and Privacy, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  30. C. A. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Programming, 26(2), 1996.Google ScholarGoogle ScholarCross RefCross Ref
  31. Microsoft. Security Bulletin MS05-042. http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx, August 2005.Google ScholarGoogle Scholar
  32. J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A Probabilistic Polynomial-Time Process Calculus for the Analysis of Cryptographic Protocols. Theoretical Computer Science, 353(1--3), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-State Analysis of SSL 3.0. In 7th USENIX Security Symp., pages 201--216, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network Authentication Service (V5), July 2005. http://www.ietf.org/rfc/rfc4120.Google ScholarGoogle Scholar
  35. K. Raeburn. Encryption and Checksum Specifications for Kerberos 5. http://www.ietf.org/rfc/rfc3961.txt, Feb. 2005.Google ScholarGoogle Scholar
  36. A. Roy, A. Datta, A. Derek, and J. C. Mitchell. Inductive proofs of computational secrecy. In ESORICS 2007, volume 4734 of LNCS. Springer, Sept. 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Roy, A. Datta, and J. C. Mitchell. Formal proofs of cryptographic security of Diffie-Hellman-based protocols. In TGC'07, Nov. 2007. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waidner. Cryptographically Sound Theorem Proving. In CSFW 2006, July 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Computationally sound mechanized proofs for basic and public-key Kerberos

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            ASIACCS '08: Proceedings of the 2008 ACM symposium on Information, computer and communications security
            March 2008
            399 pages
            ISBN:9781595939791
            DOI:10.1145/1368310

            Copyright © 2008 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 18 March 2008

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate418of2,322submissions,18%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader