skip to main content
10.1145/1374376.1374488acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Graphs, polymorphisms and the complexity of homomorphism problems

Authors Info & Claims
Published:17 May 2008Publication History

ABSTRACT

We use a connection between polymorphisms and the structure of smooth digraphs to prove the conjecture of Bang-Jensen and Hell from 1990 and, as a consequence, a conjecture of Bang-Jensen, Hell and MacGillivray from 1995. The conjectured characterization of computationally complex coloring problems for smooth digraphs is proved using tools of universal algebra. We cite further graph results obtained using this new approach. The proofs are based in an universal algebraic framework developed for the Constraint Satisfaction Problem and the CSP dichotomy conjecture of Feder and Vardi in particular.

References

  1. Jørgen Bang-Jensen and Pavol Hell. The effect of two cycles on the complexity of colourings by directed graphs. Discrete Appl. Math., 26(1):1--23, 1990.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Jørgen Bang-Jensen, Pavol Hell, and Gary MacGillivray. Hereditarily hard $H$-colouring problems. Discrete Math., 138(1-3):75--92, 1995. 14th British Combinatorial Conference (Keele, 1993).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Libor Barto, Marcin Kozik, Miklós Maróti, and Todd Niven. Csp dichotomy for special triads. in preparation.]]Google ScholarGoogle Scholar
  4. Libor Barto, Marcin Kozik, and Todd Niven. The csp dichotomy holds for digraphs with no sources and no sinks (a positive answer to a conjecture of bang-jensen and hell). submitted.]]Google ScholarGoogle Scholar
  5. Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of constraints using finite algebras. SIAM J. Comput., 34(3):720--742 (electronic), 2005.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Andrei A. Bulatov. H-coloring dichotomy revisited. Theoret. Comput. Sci., 349(1):31--39, 2005.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Andrei A. Bulatov, Andrei A. Krokhin, and Peter Jeavons. Constraint satisfaction problems and finite algebras. In Automata, languages and programming (Geneva, 2000), volume 1853 of Lecture Notes in Comput. Sci., pages 272--282. Springer, Berlin, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Stanley Burris and H. P. Sankappanavar. A course in universal algebra, volume 78 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1981.]]Google ScholarGoogle ScholarCross RefCross Ref
  9. Tomás Feder. Classification of homomorphisms to oriented cycles and of k-partite satisfiability. SIAM J. Discrete Math., 14(4):471--480 (electronic), 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput., 28(1):57--104 (electronic), 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Wolfgang Gutjahr, Emo Welzl, and Gerhard Woeginger. Polynomial graph-colorings. Discrete Appl. Math., 35(1):29--45, 1992.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. P. Hell, J. Nevril, and X. Zhu. Complexity of tree homomorphisms. Discrete Appl. Math., 70(1):23--36, 1996.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. P. Hell, J. Nevril, and X. Zhu. Duality and polynomial testing of tree homomorphisms. Trans. Amer. Math. Soc., 348(4):1281--1297, 1996.]]Google ScholarGoogle ScholarCross RefCross Ref
  14. P. Hell, J. Nevsetvril, and X. Zhu. Duality of graph homomorphisms. In Combinatorics, Paul Erd\H os is eighty, Vol. 2 (Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud., pages 271--282. János Bolyai Math. Soc., Budapest, 1996.]]Google ScholarGoogle Scholar
  15. Pavol Hell and Jaroslav Ne\vset\vril. On the complexity of $H$-coloring. J. Combin. Theory Ser. B, 48(1):92--110, 1990.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Pavol Hell and Jaroslav Ne\vset\vril. Graphs and homomorphisms, volume 28 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004.]]Google ScholarGoogle ScholarCross RefCross Ref
  17. Pavol Hell, Hui Shan Zhou, and Xuding Zhu. Homomorphisms to oriented cycles. Combinatorica, 13(4):421--433, 1993.]]Google ScholarGoogle ScholarCross RefCross Ref
  18. David Hobby and Ralph McKenzie. The structure of finite algebras, volume 76 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1988.]]Google ScholarGoogle ScholarCross RefCross Ref
  19. Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM, 44(4):527--548, 1997.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Benoit Larose and László Zádori. The complexity of the extendibility problem for finite posets. SIAM J. Discrete Math., 17(1):114--121 (electronic), 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Benoit Larose and László Zádori. Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. Internat. J. Algebra Comput., 16(3):563--581, 2006.]]Google ScholarGoogle ScholarCross RefCross Ref
  22. Gary MacGillivray. On the complexity of colouring by vertex-transitive and arc-transitive digraphs. SIAM J. Discrete Math., 4(3):397--408, 1991.]]Google ScholarGoogle ScholarCross RefCross Ref
  23. Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric operations. Algebra Universalis (accepted), 2007.]]Google ScholarGoogle Scholar
  24. Ralph N. McKenzie, George F. McNulty, and Walter F. Taylor. Algebras, lattices, varieties. Vol. I. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1987.]]Google ScholarGoogle Scholar
  25. Ugo Montanari. Networks of constraints: fundamental properties and applications to picture processing. Information Sci., 7:95--132, 1974.]]Google ScholarGoogle ScholarCross RefCross Ref
  26. Thomas J. Schaefer. The complexity of satisfiability problems. In Conference Record of the Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978), pages 216--226. ACM, New York, 1978.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Walter Taylor. Varieties obeying homotopy laws. Canad. J. Math., 29(3):498--527, 1977.]]Google ScholarGoogle ScholarCross RefCross Ref
  28. Xuding Zhu. A polynomial algorithm for homomorphisms to oriented cycles. J. Algorithms, 19(3):333--345, 1995.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Graphs, polymorphisms and the complexity of homomorphism problems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '08: Proceedings of the fortieth annual ACM symposium on Theory of computing
      May 2008
      712 pages
      ISBN:9781605580470
      DOI:10.1145/1374376

      Copyright © 2008 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 May 2008

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      STOC '08 Paper Acceptance Rate80of325submissions,25%Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader