skip to main content
10.1145/1377676.1377727acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Delaunay triangulations of imprecise pointsin linear time after preprocessing

Published:09 June 2008Publication History

ABSTRACT

An assumption of nearly all algorithms in computational geometry is that the input points are given precisely, so it is interesting to ask what is the value of imprecise information about points. We show how to preprocess a set of n disjoint unit disks in the plane in O(n log n) time so that if one point per disk is specified with precise coordinates, the Delaunay triangulation can be computed in linear time. From the Delaunay, one can obtain the Gabriel graph and a Euclidean minimum spanning tree; it is interesting to note the roles that these two structures play in our algorithm to quickly compute the Delaunay.

References

  1. M. Abellanas, F. Hurtado, and P. A. Ramos. Structural tolerance and Delauny triangulation. Inf. Process. Lett., 71(5-6):221--227, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom., 4(6):591--604, 1989.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Bandyopadhyay and J. Snoeyink. Almost-Delaunay simplices: Nearest neighbor relations for imprecise points. In ACM-SIAM Symp on Discrete Algorithms, pages 403--412, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. Bandyopadhyay and J. Snoeyink. Almost-Delaunay simplices: Nearest neighbor relations for imprecise 3D points using CGAL. Computational Geometry: Theory and Applications, 38(1-2):4--15, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. K. Bühler, E. Dyllong, and W. Luther. Reliable distance and intersection computation using finite precision geometry. In Numerical Software with Result Verification, number 2991 in LNCS, pages 160--190. Springer Verlag, 2004.Google ScholarGoogle Scholar
  6. J. Cartigny, F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Localized LMST and RNG based minimum-energy broadcast protocols in ad hoc networks. Ad Hoc Networks, 3(1):1--16, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  7. Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.Google ScholarGoogle Scholar
  8. B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485--524, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a simple polygon in linear time. Discrete Comput. Geom., 21(3):405--420, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  10. F. Y. L. Chin and C. A. Wang. Finding the constrained Delaunay triangulation and constrained Voronoi diagram of a simple polygon in linear time. SIAM J. Comput., 28(2):471--486, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph., 9(1):66--104, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. S. Ely and A. P. Leclerc. Correct Delaunay triangulation in the presence of inexact inputs and arithmetic. Reliable Computing, 6:23--38, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  13. S. Fortune. Numerical stability of algorithms for 2-d Delaunay triangulations. Internat. J. Comput. Geom. Appl., 5(1-2):193--213, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  14. K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation analysis. Systematic Zoology, 18:259--278, 1969.Google ScholarGoogle ScholarCross RefCross Ref
  15. M. T. Goodrich, J. S. B. Mitchell, and M. W. Orletsky. Practical methods for approximate geometric pattern matching under rigid motion. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 103--112, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Graham, B. Lubachevsky, K. Nurmela, and P. Östergård. Dense packings of congruent circles in a circle. Disc. Math., 181:139--154, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. L. J. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: building robust algorithms from imprecise computations. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 208--217, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. L. J. Guibas, D. Salesin, and J. Stolfi. Constructing strongly convex approximate hulls with inaccurate primitives. Algorithmica, 9:534--560, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  19. A. A. Khanban. Basic Algorithms of Computational Geometry with Imprecise Input. PhD thesis, Imperial College, London, 2005.Google ScholarGoogle Scholar
  20. A. A. Khanban and A. Edalat. Computing Delaunay triangulation with imprecise input data. In Proc. 15th Canad. Conf. Comput. Geom., pages 94--97, 2003.Google ScholarGoogle Scholar
  21. A. A. Khanban, A. Edalat, and A. Lieutier. Computability of partial Delaunay triangulation and Voronoi diagram. In V. Brattka, M. Schröder, and K. Weihrauch, editors, Electronic Notes in Theoretical Computer Science, volume 66. Elsevier, 2002.Google ScholarGoogle Scholar
  22. M. Löffler and M. van Kreveld. Largest and smallest convex hulls for imprecise points. Algorithmica, 2008 (to appear).Google ScholarGoogle Scholar
  23. K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge, UK, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. Seidel. A method for proving lower bounds for certain geometric problems. In G. T. Toussaint, editor, Computational Geometry, pages 319--334. North-Holland, Amsterdam, Netherlands, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation. Computational Geometry: Theory and Applications, 22(1-3):21--74, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. E. Specht. The best known packings of equal circles in the unit circle (up to n = 500). http://hydra.nat.uni-magdeburg.de/packing/cci/cci.html, July 2007.Google ScholarGoogle Scholar
  27. K. Sugihara and M. Iri. Two design principles of geometric algorithms in finite-precision arithmetic. Appl. Math. Lett., 2(2):203--206, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  28. K. Sugihara and M. Iri. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic. Proc. IEEE, 80(9):1471--1484, Sept. 1992.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. van Kreveld and M. Löffler. Largest bounding box, smallest diameter, and related problems on imprecise points. In Proc. 10th Workshop on Algorithms and Data Structures, LNCS 4619, pages 447--458, 2007.Google ScholarGoogle Scholar
  30. F. Weller. Stability of Voronoi neighborship under perturbations of the sites. In Proc. 9th Canad. Conf. Comput. Geom., pages 251--256, 1997.Google ScholarGoogle Scholar
  31. C. Yap. Robust geometric computation. In J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, Second Edition, pages 927--952. CRC Press, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Delaunay triangulations of imprecise pointsin linear time after preprocessing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SCG '08: Proceedings of the twenty-fourth annual symposium on Computational geometry
      June 2008
      304 pages
      ISBN:9781605580715
      DOI:10.1145/1377676

      Copyright © 2008 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 9 June 2008

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate625of1,685submissions,37%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader