skip to main content
10.1145/1387269.1387290acmconferencesArticle/Chapter ViewAbstractPublication PagesicpsConference Proceedingsconference-collections
research-article

SStreaMWare: a service oriented middleware for heterogeneous sensor data management

Published: 06 July 2008 Publication History

Abstract

Smart sensors are already being used in various application domains such as medical, environmental, urban, domestic and industrial. These applications mostly need data from sensors of different types (temperature, pressure, location, camera, etc.) that may be managed by different software, e.g., proprietary software from manufacturers. Heterogeneous distributed sensor data should then be aggregated in order to obtain more accurate and complete information on real world events. This paper proposes SStreaMWare, a service-oriented middleware for heterogeneous sensor data management. SStreaMWare's simple data schema allows data representation of various types of sensors in a common generic way. Declarative queries can then be formulated according to this schema. Thanks to the service-oriented approach of SStreaMWare, heterogeneity of sensor software is hidden by generic query services, which can be discovered and used dynamically.

References

[1]
OSGi Alliance, "OSGi Service Platform Core Specification Release 4", October 2005. http://www.osgi.org/.]]
[2]
OSGi Alliance, "OSGi Service Platform Service Compendium Release 4", October 2005. http://www.osgi.org/.]]
[3]
ITU-T & ISO/IEC, "ODP Reference Model: Overview, Foundations, Architecture", Recommendations X.901, X902, X903 & International Standards 10746-1, 10746-2, 10746-3, 1995.]]
[4]
D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: a new model and architecture for data stream management. VLDB Journal, 12(2):120--139, 2003.]]
[5]
D. Abadi, W. Lindner, S. Madden, and J. Schuler. An integration framework for sensor networks and data stream management systems. In VLDB, pages 1361--1364, 2004.]]
[6]
D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The Design of the Borealis Stream Processing Engine. In Second Biennial Conference on Innovative Data Systems Research (CIDR 2005), Asilomar, CA, January 2005.]]
[7]
K. Aberer, M. Hauswirth, and A. Salehi. The global sensor networks middleware for efficient and flexible deployment and interconnection of sensor networks. Technical Report LSIR-REPORT-2006-006, Ecole Polytechnique Fédérale de Lausanne (EPFL), 2006.]]
[8]
K. Aberer, M. Hauswirth, and A. Salehi. A middleware for fast and flexible sensor network deployment. In VLDB'2006: Proceedings of the 32nd international conference on very large data bases, pages 1199--1202. VLDB Endowment, 2006.]]
[9]
I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a survey. Computer Networks, 38(4):393--422, 2002.]]
[10]
A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Widom. STREAM: The stanford stream data manager. IEEE Data Eng. Bull., 26(1):19--26, 2003.]]
[11]
A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic foundations and query execution. Technical Report 2003-67, Stanford University, 2003.]]
[12]
B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems. In PODS '02, pages 1--16, NY, USA, 2002. ACM Press.]]
[13]
F. Baude, A. Bottaro, J.-M. Brun, A. Chazalet, A. Constancin, D. Donsez, L. Gürgen, P. Lalanda, V. Legrand, V. Lestideau, S. Marié, C. Marin, A. Moreau, and V. Olive. Extension de passerelles OSGi pour les domaines de la distribution électrique: Modèles et outils. In OSGI Workshop in conjonction with UBIMOB 06, 3rd French-speaking conf. on Mobility and Ubiquity, 2006.]]
[14]
P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In MDM '01: Proceedings of the 2nd Int. Conference on Mobile Data Management, pages 3--14, London, UK, 2001. Springer-Verlag.]]
[15]
A. Bottaro, A. Gérodolle, and P. Lalanda. Pervasive spontaneous composition. In First IEEE International Workshop on Service Integration in Pervasive Environments, Lyon, France, June 2006.]]
[16]
H. Cervantes and R. S. Hall. Autonomous adaptation to dynamic availability using a service-oriented component model. In ICSE '04: Proceedings of the 26th International Conference on Software Engineering, pages 614--623, Washington, DC, USA, 2004. IEEE Computer Society.]]
[17]
S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin, J. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. TelegraphCQ: Continuous dataflow processing for an uncertain world. In CIDR, 2003.]]
[18]
A. Deshpande, S. Nath, P. B. Gibbons, and S. Seshan. Cache-and-query for wide area sensor databases. In SIGMOD '03: Proceedings of the 2003 ACM SIGMOD international conference on Management of data, pages 503--514, New York, NY, USA, 2003. ACM Press.]]
[19]
M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu, O. Cooper, A. Edakkunni, and W. Hong. Design Considerations for High Fan-In Systems: The HiFi Approach. In CIDR, page 290, 2005.]]
[20]
P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet: An architecture for a worldwide sensor web. IEEE Pervasive Computing, 02(4):22--33, 2003.]]
[21]
L. Gürgen. Scalable management of heterogeneous sensor data (in french). PhD Thesis. Grenoble Institute of Technology (INPG), 2007.]]
[22]
L. Gürgen. State of the art of sensor data management (in french). Technical report, ACSE Poject, WP2-Architecture. Orange Labs, France Telecom Group, 2008.]]
[23]
L. Gürgen, C. Labbé, V. Olive, and C. Roncancio. A scalable architecture for heterogeneous sensor management. In DEXA Workshops, pages 1108--1112, 2005.]]
[24]
L. Gürgen, C. Labbé, C. Roncancio, and V. Olive. SStreaM: A model for representing sensor data and sensor queries. In Int. Conf. on Intelligent Systems And Computing: Theory And Applications (ISYC), July 2006.]]
[25]
L. Gürgen, C. Roncancio, C. Labbé, and V. Olive. Transactional issues in sensor data management. In 3rd Int. Workshop On Data Management for Sensor Networks in conjunction with VLDB, pages 27--32, 2006.]]
[26]
L. Gürgen, C. Roncancio, C. Labbé, V. Olive, and D. Donsez. SStreaMWare : un intergiciel de gestion de flux de données de capteurs hétérogènes (demonstration paper). In 23th French-speaking conference on Advanced Databases (BDA'07), October 2007.]]
[27]
E. Guttman. Service location protocol: Automatic discovery of ip network services. IEEE Internet Computing, 3(4):71--80, 1999.]]
[28]
C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed diffusion for wireless sensor networking. IEEE/ACM Trans. Netw., 11(1):2--16, 2003.]]
[29]
S. Madden and M. J. Franklin. Fjording the stream: An architecture for queries over streaming sensor data. In ICDE '02: Proceedings of the 18th International Conference on Data Engineering, page 555, Washington, DC, USA, 2002. IEEE Computer Society.]]
[30]
S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A tiny aggregation service for ad-hoc sensor networks. In OSDI, 2002.]]
[31]
S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst., 30(1):122--173, 2005.]]
[32]
J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-osgi: Distributed applications through software modularization. In R. Cerqueira and R. H. Campbell, editors, Middleware, volume 4834 of Lecture Notes in Computer Science, pages 1--20. Springer, 2007.]]
[33]
S. Rizvi, S. R. Jeffery, S. Krishnamurthy, M. J. Franklin, N. Burkhart, A. Edakkunni, and L. Liang. Events on the edge. In SIGMOD '05: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages 885--887, NY, USA, 2005. ACM Press.]]
[34]
J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Seltzer, and M. Welsh. Hourglass: An infrastructure for connecting sensor networks and applications. Technical Report TR-21-04, Harvard University, 2004.]]
[35]
J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Seltzer, and M. Welsh. Hourglass: An infrastructure for connecting sensor networks and applications. Technical Report TR-21-04, Harvard University, 2004.]]
[36]
G. Wiederhold. Mediators in the architecture of future information systems. IEEE Computer, 25(3):38--49, 1992.]]

Cited By

View all
  • (2022)Evolving Requirements and Application of SDN and IoT in the Context of Industry 4.0, Blockchain and Artificial IntelligenceSoftware Defined Networks10.1002/9781119857921.ch13(427-496)Online publication date: 11-Aug-2022
  • (2018)A service-oriented middleware framework for manufacturing industry 4.0ACM SIGBED Review10.1145/3292384.329238915:5(29-36)Online publication date: 13-Nov-2018
  • (2018)Lightweight Service Mashup Middleware With REST Style Architecture for IoT ApplicationsIEEE Transactions on Network and Service Management10.1109/TNSM.2018.282793315:3(1063-1075)Online publication date: Sep-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ICPS '08: Proceedings of the 5th international conference on Pervasive services
July 2008
202 pages
ISBN:9781605581354
DOI:10.1145/1387269
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 July 2008

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. dynamicity
  2. heterogeneity
  3. sensor data management
  4. service-oriented middleware

Qualifiers

  • Research-article

Conference

ICPS08
Sponsor:

Acceptance Rates

Overall Acceptance Rate 23 of 34 submissions, 68%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)10
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Evolving Requirements and Application of SDN and IoT in the Context of Industry 4.0, Blockchain and Artificial IntelligenceSoftware Defined Networks10.1002/9781119857921.ch13(427-496)Online publication date: 11-Aug-2022
  • (2018)A service-oriented middleware framework for manufacturing industry 4.0ACM SIGBED Review10.1145/3292384.329238915:5(29-36)Online publication date: 13-Nov-2018
  • (2018)Lightweight Service Mashup Middleware With REST Style Architecture for IoT ApplicationsIEEE Transactions on Network and Service Management10.1109/TNSM.2018.282793315:3(1063-1075)Online publication date: Sep-2018
  • (2017)Semantic data management in Smart Cities2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP)10.1109/OPTIM.2017.7975123(1126-1131)Online publication date: May-2017
  • (2016)On the Use of Abstract Models for RDF/S ProvenanceLinked Data Management10.1201/b16859-26(419-440)Online publication date: 19-Apr-2016
  • (2016)Inexpensive Multimodal Sensor Fusion System for Autonomous Data Acquisition of Road Surface ConditionsIEEE Sensors Journal10.1109/JSEN.2016.260287116:21(7731-7743)Online publication date: Nov-2016
  • (2016)Dynamic Ontology-Based Sensor BindingAdvances in Databases and Information Systems10.1007/978-3-319-44039-2_22(323-337)Online publication date: 14-Aug-2016
  • (2016)A Framework for Semantic Integration and Analysis of Measurement Data in Modern Industrial MachineryAutomation, Communication and Cybernetics in Science and Engineering 2015/201610.1007/978-3-319-42620-4_67(893-905)Online publication date: 29-Oct-2016
  • (2016)SPACES: Subjective sPaces Architecture for Contextualizing hEterogeneous SourcesSoftware Technologies10.1007/978-3-319-30142-6_23(415-429)Online publication date: 25-Feb-2016
  • (2014)Data stream processing in dynamic and decentralized peer-to-peer networksProceedings of the 2014 SIGMOD PhD symposium10.1145/2602622.2602629(1-5)Online publication date: 18-Jun-2014
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media