skip to main content
10.1145/1389095.1389337acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Discovering causes of financial distress by combining evolutionary algorithms and artificial neural networks

Published: 12 July 2008 Publication History

Abstract

In this work we compare two soft-computing methods for producing models that are able to predict whether a company is going to have book losses: artificial neural networks (ANNs) and genetic programming (GP). In order to build prediction models that can be applied to an extensive number of practical cases, we need simple models which require a small amount of data. Kohonen's self-organizing map (SOM) is a non-supervised neural network that is usually used as a clustering tool. In our case a SOM has been used to reduce the dimensions of the prediction problem. Traditionally, ANNs have been considered able to produce better classifier structures than GP. In this work we merge the capability of GP for generating classification trees and the feature extraction abilities of SOM, obtaining a classification tool that beats the results yielded using an evolutionary ANN method.

References

[1]
E. Alfaro-Cid, A. Cuesta-Cañada, K. Sharman, and A. I. Esparcia-Alcázar. Natural Computing in Computational Economics and Finance, chapter Strong Typing, Variable Reduction and Bloat Control for Solving the Bankruptcy Prediction Problem Using Genetic Programming. Springer, 2008.
[2]
E. Alfaro-Cid, A. Mora, J. Merelo, K. Sharman, and A. Esparcia-Alcázar. A SOM and GP tool for reducing the dimensionality of a financial distress prediction problem. LNCS, 2008. Accepted for publication.
[3]
E. Alfaro-Cid, K. Sharman, and A. Esparcia-Alcázar. A genetic programming approach for bankruptcy prediction using a highly unbalanced database. LNCS, 4448:169--178, 2007.
[4]
E. Altman. The success of business failure prediction models. An international survey. J. of Banking, Acc. and Finance, 8:171--198, 1984.
[5]
W. Beaver. Financial ratios as predictors of failures. Empirical research in accounting: Selected studies. J. of Acc. Research, 5:71--111, 1966.
[6]
C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press. Oxford University Press Inc., 1996.
[7]
A. Brabazon and M. O'Neill. Biologically inspired algorithms for finantial modelling. Springer, 2006.
[8]
A. Cangelosi, D. Parisi, and S. Nolfi. Cell Division and Migration in a Genotype for Neural Networks. Network: Computation in Neural Systems, 5:497--515, 1994.
[9]
P. Castillo, M. Arenas, J. Merelo, V. Rivas, and G. Romero. Multiobjective optimization of ensembles of multilayer perceptrons for pattern classification. In Proceedings PPSN IX, pages 453--462, 2006.
[10]
P. Castillo, J. Merelo, G. Romero, A. Prieto, and I. Rojas. Statistical Analysis of the Parameters of a Neuro-Genetic Algorithm. IEEE Trans. on Neural Networks, 13(6):1374--1394, 2002.
[11]
P. A. Castillo, J. M. D. la Torre, J. J. Merelo, and I. Román. Forecasting business failure. A comparison of neural networks and logistic regression for spanish companies. In Proc. of the 24th Eur. Acc. Assoc., Athens, Greece, 2001.
[12]
P. A. Castillo, J. J. Merelo, V. Rivas, G. Romero, and A. Prieto. G-Prop: Global Optimization of Multilayer Perceptrons using GAs. Neurocomputing, 35(1-4):149--163, 2000.
[13]
I. de Falco, A. Iazzetta, P. Natale, and E. Tarantino. Evolutionary neural networks for nonlinear dynamics modeling. LNCS, 1498:593--602, 1998.
[14]
P. Durr, C. Mattiussi, and D. Floreano. Neuroevolution with Analog Genetic Encoding. LNCS, 4193:671--680, 2006.
[15]
F. Fernández de Vega, M. Rubio del Solar, and A. Fernández Martínez. Implementación de algoritmos evolutivos para un entorno de distribución epidémica. In Actas del MAEB'05, pages 57--62, Granada, Spain, 2005.
[16]
N. Japkowicz and S. Stephen. The class imbalance problem: a systematic study. Int. Data Analysis, 6(5):429--449, 2002.
[17]
S. Kaski, J. Sinkkonen, and J. Peltonen. Bankruptcy analysis with self-organizing maps in learning metrics. IEEE Trans. Neural Networks, 12(4):936ss, 2001.
[18]
K. Kiviluoto. Predicting bankruptcies with the self-organizing map. Neurocomputing, 21(1-3):191--201, 1998.
[19]
T. Kohonen. The Self-Organizing Maps. Springer, 2001.
[20]
T. Lensberg, A. Eilifsen, and T. E. McKee. Bankruptcy theory development and classification via genetic programming. Eur. J. of Op. Research, 169:677--697, 2006.
[21]
F. Leung, H. Lam, S. Ling, and P. Tam. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans. on Neural Networks, 14(1):79--88, 2003.
[22]
R. Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazine, 3(4):4--22, 1987.
[23]
H. Mayer, R. Schwaiget, and R. Huber. Evolving topologies of artificial neural networks adapted to image processing tasks. In Proc. of 26th Int. Symp. on Remote Sensing of Environment, pages 71--74, Vancouver, BC, Canada, 1996.
[24]
J. J. Merelo, M. G. Arenas, J. Carpio, P. A. Castillo, V. M. Rivas, G. Romero, and M. Schoenauer. Evolving objects. In Proc. of FEA'2000 & JCIS'2000, pages 1083--1086, Atlantic City, NJ, 2000.
[25]
J. J. Merelo, M. Patón, A. Cañas, A. Prieto, and F. Morán. Optimization of a competitive learning neural network by genetic algorithms. LNCS, 686:185--192, 1993.
[26]
D. J. Montana. Strongly typed genetic programming. Evolutionary Computation, 3(2):199--230, 1995.
[27]
A. M. Mora, J. L. J. Laredo, P. A. Castillo, and J. J. Merelo. Predicting financial distress: A case study using self-organizing maps. In F.Sandoval and et al., editors, Proc. of the 9th International Work Conference on Artificial Neural Networks (IWANN 2007), volume 4507 of LNCS, pages 765--772, San Sebastian, Spain, June 2007.
[28]
D. Moriarty and R. Miikkulainen. Hierarchical evolution of neural networks. In Proc. of the ICEC'98, pages 428--433, Anchorage, AK, 1998.
[29]
I. Román, M. E. Gómez, J. M. D. la Torre, J. J. Merelo, and A. M. Mora. Predicting financial distress: Relationship between continued losses and legal bankrupcy. In Proc. of the 27th Annual Congress Eur. Acc. Assoc., Dublin, Ireland, 2006.
[30]
S. Salcedo-Sanz, J. L. Fernández-Villacañas, M. J. Segovia-Vargas, and C. Bousoño-Calzón. Genetic programming for the prediction of insolvency in non-life insurance companies. Computers and Op. Research, 32:749--765, 2005.
[31]
D. Thierens, J. Suykens, J. Vandewalle, and B. D. Moor. Genetic weight optimization of a feedforward neural network controller. In Proc. of the Conf. on Artificial Neural Nets and Genetic Algorithms, pages 658--663, 1993.
[32]
S. Ultsch. Kohonen's self-organizing maps for exploratory data analysis. In Proc. of the INNC'90, pages 305--308, 2000.
[33]
D. Whitley. The GENITOR algorithm and selection presure: Why rank-based allocation of reproductive trials is best. In Proc. of the 3th Int. Conf. on Genetic Algorithms, pages 116--121, 1989.
[34]
X. Yao. Evolving artificial neural networks. Proc. of the IEEE, 87(9):1423--1447, 1999.

Cited By

View all
  • (2024)A comparative study of feature selection and feature extraction methods for financial distress identificationPeerJ Computer Science10.7717/peerj-cs.195610(e1956)Online publication date: 30-Apr-2024
  • (2024)Balancing Techniques for Advanced Financial Distress Detection Using Artificial IntelligenceElectronics10.3390/electronics1308159613:8(1596)Online publication date: 22-Apr-2024
  • (2022)Systematic Review of Financial Distress Identification using Artificial Intelligence MethodsApplied Artificial Intelligence10.1080/08839514.2022.213812436:1Online publication date: 18-Nov-2022
  • Show More Cited By

Index Terms

  1. Discovering causes of financial distress by combining evolutionary algorithms and artificial neural networks

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      GECCO '08: Proceedings of the 10th annual conference on Genetic and evolutionary computation
      July 2008
      1814 pages
      ISBN:9781605581309
      DOI:10.1145/1389095
      • Conference Chair:
      • Conor Ryan,
      • Editor:
      • Maarten Keijzer
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 12 July 2008

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. artificial neural networks
      2. financial distress prediction
      3. genetic programming
      4. self-organizing maps

      Qualifiers

      • Research-article

      Conference

      GECCO08
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)2
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 28 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)A comparative study of feature selection and feature extraction methods for financial distress identificationPeerJ Computer Science10.7717/peerj-cs.195610(e1956)Online publication date: 30-Apr-2024
      • (2024)Balancing Techniques for Advanced Financial Distress Detection Using Artificial IntelligenceElectronics10.3390/electronics1308159613:8(1596)Online publication date: 22-Apr-2024
      • (2022)Systematic Review of Financial Distress Identification using Artificial Intelligence MethodsApplied Artificial Intelligence10.1080/08839514.2022.213812436:1Online publication date: 18-Nov-2022
      • (2010)Applying support vector machines and mutual information to book losses predictionThe 2010 International Joint Conference on Neural Networks (IJCNN)10.1109/IJCNN.2010.5596710(1-7)Online publication date: Jul-2010
      • (2009)Multi-objective optimization with an evolutionary artificial neural network for financial forecastingProceedings of the 11th Annual conference on Genetic and evolutionary computation10.1145/1569901.1570096(1451-1458)Online publication date: 8-Jul-2009

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media