skip to main content
10.1145/1401890.1401998acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Learning methods for lung tumor markerless gating in image-guided radiotherapy

Authors Info & Claims
Published:24 August 2008Publication History

ABSTRACT

In an idealized gated radiotherapy treatment, radiation is delivered only when the tumor is at the right position. For gated lung cancer radiotherapy, it is difficult to generate accurate gating signals due to the large uncertainties when using external surrogates and the risk of pneumothorax when using implanted fiducial markers. In this paper, we investigate machine learning algorithms for markerless gated radiotherapy with fluoroscopic images. Previous approach utilizes template matching to localize the tumor position. Here, we investigate two ways to improve the precision of tumor target localization by applying: (1) an ensemble of templates where the representative templates are selected by Gaussian mixture clustering, and (2) a support vector machine (SVM) classifier with radial basis kernels. Template matching only considers images inside the gating window, but images outside the gating window might provide additional information. We take advantage of both states and re-cast the gating problem into a classification problem. Thus, we are able to use the SVM classifier for gated radiotherapy. To verify the effectiveness of the two proposed techniques, we apply them on five sequences of fluoroscopic images from five lung cancer patients against the gating signal of manually contoured tumors as ground truth. Our five-patient case study shows that both ensemble template matching and SVM are reasonable tools for image-guided markerless gated radiotherapy with an average of approximately 95% precision in terms of delivered target dose at approximately 35% duty cycle.

References

  1. S. Arslan, A. Yilmaz, B. Bayramgurler, O. Uzman, E. Nver, and E. Akkaya. Ct- guided transthoracic fine needle aspiration of pulmonary lesions: accuracy and complications in 294 patients. Med Sci Monit, 8(7):CR493'7, 2002.Google ScholarGoogle Scholar
  2. R. I. Berbeco, S. B. Jiang, G. C. Sharp, G. T. Chen, H. Mostafavi, and H. Shirato. Integrated radiotherapy imaging system (iris): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors. Phys Med Biol, 49(2):243--55, 2004Google ScholarGoogle ScholarCross RefCross Ref
  3. R. I. Berbeco, H. Mostafavi, G. C. Sharp, and S. B. Jiang. Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers. Phys Med Biol, 50(19):4481--90, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  4. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Breiman. Bagging predictors. Machine Learning, 26(2):123--140, 1996. Google ScholarGoogle ScholarCross RefCross Ref
  6. S. A. J. Burges, C J C and B. Scholkopf. Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, USA, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. C. Chang and C. J. Lin. Libsvm: a library for support vector machines. 2003. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.Google ScholarGoogle Scholar
  8. Q. Chen, M. Weinhous, F. Deibel, J. Ciezki, and R. Macklis. Fluoroscopic study of tumor motion due to breathing: facilitating precise radiation therapy for lung cancer patients. Med Phys, 28(9):1850--6, 2001. TY - JOUR.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal Royal Statistical Society, Series B, 39(1):1--38, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  10. P. R. Geraghty, S. T. Kee, G. McFarlane, M. K. Razavi, D. Y. Sze, and M. D. Dake. Ct-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology, 229(2):475--81, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  11. T. Harada, H. Shirato, S. Ogura, S. Oizumi, K. Yamazaki, S. Shimizu, R. Onimaru, K. Miyasaka, M. Nishimura, and H. Dosaka-Akita. Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer, 95(8):1720--7., 2002.Google ScholarGoogle ScholarCross RefCross Ref
  12. K. R. Jain, R and B. G. Schunck. Machine Vision. New York: McGraw-Hill, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. B. Jiang. Radiotherapy of mobile tumors. Semin Radiat Oncol, 16(4):239--48, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  14. I. T. Jolliffe. Principal Component Analysis. Berlin: Springer, 2002.Google ScholarGoogle Scholar
  15. F. Laurent, V. Latrabe, B. Vergier, and P. Michel. Percutaneous ct-guided biopsy of the lung: comparison between aspiration and automated cutting needles using a coaxial technique. Cardiovasc Intervent Radiol, 23(4):266--72, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  16. G. J. McLachlan and K. E. Basford. Mixture Models, Inference and Applications to Clustering. Marcel Dekker, New York, 1988.Google ScholarGoogle Scholar
  17. G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461--464, 1978.Google ScholarGoogle ScholarCross RefCross Ref
  18. Y. Seppenwoolde, H. Shirato, K. Kitamura, S. Shimizu, M. van Herk, J. V. Lebesque, and K. Miyasaka. Precise and real-time measurement of 3d tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys, 53(4):822--34, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  19. H. Shirato, T. Harada, T. Harabayashi, K. Hida, H. Endo, K. Kitamura, R. Onimaru, K. Yamazaki, N. Kurauchi, T. Shimizu, N. Shinohara, M. Matsushita, H. Dosaka-Akita, and K. Miyasaka. Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. Int J Radiat Oncol Biol Phys, 56(1):240--7., 2003.Google ScholarGoogle ScholarCross RefCross Ref
  20. X. Tang, G. S. Sharp, and S. B. Jiang. Patient setup based on lung tumor mass for gated radiotherapy. Med. Phys. (abstract), 33:2244, 2006.Google ScholarGoogle Scholar
  21. V. Vapnik. The nature of statistical learning theory. Springer, New York, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Learning methods for lung tumor markerless gating in image-guided radiotherapy

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      KDD '08: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining
      August 2008
      1116 pages
      ISBN:9781605581934
      DOI:10.1145/1401890
      • General Chair:
      • Ying Li,
      • Program Chairs:
      • Bing Liu,
      • Sunita Sarawagi

      Copyright © 2008 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 24 August 2008

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      KDD '08 Paper Acceptance Rate118of593submissions,20%Overall Acceptance Rate1,133of8,635submissions,13%

      Upcoming Conference

      KDD '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader