skip to main content
10.1145/1451940.1451978acmconferencesArticle/Chapter ViewAbstractPublication PagesideasConference Proceedingsconference-collections
research-article

Incremental view-based analysis of stock market data streams

Published: 10 September 2008 Publication History

Abstract

In this paper we show the usefulness and feasibility of applying conventional SQL queries for analyzing a wide spectrum of data streams. As application area we have chosen the analysis of stock market data, mainly because this kind of application exhibits sufficiently many of those characteristics for which relational query technology can be considered a valuable instrument in a stream context. The resulting TInTo system is a tool for computing so-called technical indicators, numerical values calculated from a certain kind of stock market data, characterizing the development of stock prices over a given time period. Update propagation is used for the incremental recomputation of indicator views defined over a stream of continuously changing price data.

References

[1]
A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom: STREAM: The Stanford Stream Data Manager. SIGMOD 2003: 665.
[2]
A. Arasu, S. Babu, and J. Widom: The CQL continuous query language: semantic foundations and query execution. VLDB J. 15(2): 121--142.
[3]
D. J. Abadi et al.: Aurora: A Data Stream Management System. SIGMOD 2003: 666.
[4]
D. J. Abadi, W. Lindner, S. Madden, and J. Schuler: An Integration Framework for Sensor Networks and Data Stream Management Systems. VLDB 2004, 1361--1364.
[5]
B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom: Models and Issues in Data Stream Systems. In PODS, pages 1--16, 2002.
[6]
A. Behrend, C. Dorau, and R. Manthey: TinTO: A Tool for the View-Based Analysis of Streams of Stock Market Data. DASFAA, 2007: 1110--1114.
[7]
A. Behrend, R. Manthey: Update Propagation in Deductive Databases Using Soft Stratification. ADBIS 2004: 22--36
[8]
F. Bancilhon, D. Maier, Y, Sagiv, and J. D. Ullman: Magic Sets and Other Strange Ways to Implement Logic Programs. PODS 1986: 1--15
[9]
S. Babu, J. Widom: Continuous Queries over Data Streams. SIGMOD Record 30(3): 109--120 (2001)
[10]
Chart Director. http://www.advsofteng.com (2006)
[11]
D. Chatziantoniou, Y. Sotiropoulos: Stream Variables: A Quick but not Dirty SQL Extension for Continuous Queries. ICDE Workshops 2007: 19--28
[12]
A. Gupta, I. S. Mumick: Materialized Views: Techniques, Implementations, and Applications. The MIT Press (1999)
[13]
U. Griefahn, T. Lemke, and R. Manthey: Chimera Prototyping Tool: User Manual. Technical Report IDEA. DE. 22.O.006, ESPRIT Project 6333 (IDEA), 1996
[14]
L. Golab, M. T. Özsu: Issues in data stream management. SIGMOD Record 32(2): 5--14 (2003)
[15]
A. Hoppe, J. Gryz: Stream Processing in a Relational Database: A Case Study. IDEAS, 2007: 216--224.
[16]
C. Hübel: TInTo - Ein datenbankgestütztes Werkzeug zur regelbasierten Wertpapieranalyse. Master Thesis, University of Bonn, 2007.
[17]
C. Le Beau, D. Lucas: Technical Traders Guide to Computer Analysis of the Futures Markets. Irwin Professional (USA), 1992
[18]
S. Madden, M. J. Franklin: Fjording the Stream: An Architecture for Queries Over Streaming Sensor Data ICDE 2002: 555--566.
[19]
M. Stonebraker, U. Çetintemel: "One Size Fits All": An Idea Whose Time Has Come and Gone (Abstract). ICDE, 2005: 2--11.
[20]
G. Schüller: Änderungspropagierung zur regelbasierten Analyse von Finanz-Datenströmen in TInTo Master Thesis, University of Bonn, 2007.
[21]
H. Wang, C. Zaniolo, and C. Luo: ATLAS: A Small but Complete SQL Extension for Data Mining and Data Streams VLDB 2003: 1113--1116.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
IDEAS '08: Proceedings of the 2008 international symposium on Database engineering & applications
September 2008
289 pages
ISBN:9781605581880
DOI:10.1145/1451940
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 September 2008

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. data streams
  2. deductive databases
  3. sensor data
  4. update propagation

Qualifiers

  • Research-article

Conference

IDEAS '08
Sponsor:

Acceptance Rates

Overall Acceptance Rate 74 of 210 submissions, 35%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 08 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Formal verification for event stream processingInformation and Computation10.1016/j.ic.2023.105058293:COnline publication date: 1-Aug-2023
  • (2015)Optimizing continuous queries using update propagation with varying granularitiesProceedings of the 27th International Conference on Scientific and Statistical Database Management10.1145/2791347.2791368(1-12)Online publication date: 29-Jun-2015
  • (2010)AIMSProceedings of the ACM SIGSPATIAL International Workshop on GeoStreaming10.1145/1878500.1878508(31-38)Online publication date: 2-Nov-2010
  • (2010)Detecting faults in technical indicator computations for financial market analysisThe 2nd International Conference on Information Science and Engineering10.1109/ICISE.2010.5689221(2749-2754)Online publication date: Dec-2010
  • (2009)A magic approach to optimizing incremental relational expressionsProceedings of the 2009 International Database Engineering & Applications Symposium10.1145/1620432.1620435(12-22)Online publication date: 16-Sep-2009
  • (2009)Detecting Moving Objects in Noisy Radar Data Using a Relational DatabaseProceedings of the 13th East European Conference on Advances in Databases and Information Systems10.1007/978-3-642-03973-7_21(286-300)Online publication date: 21-Aug-2009
  • (2009)SQL Triggers Reacting on Time EventsProceedings of the 13th East European Conference on Advances in Databases and Information Systems10.1007/978-3-642-03973-7_14(179-193)Online publication date: 21-Aug-2009

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media