skip to main content
10.1145/1463434.1463455acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Studying (non-planar) road networks through an algorithmic lens

Published: 05 November 2008 Publication History

Abstract

This paper studies real-world road networks from an algorithmic perspective, focusing on empirical studies that yield useful properties of road networks that can be exploited in the design of fast algorithms that deal with geographic data. Unlike previous approaches, our study is not based on the assumption that road networks are planar graphs. Indeed, based on the a number of experiments we have performed on the road networks of the 50 United States and District of Columbia, we provide strong empirical evidence that road networks are quite non-planar. Our approach therefore instead is directed at finding algorithmically-motivated properties of road networks as non-planar geometric graphs, focusing on alternative properties of road networks that can still lead to efficient algorithms for such problems as shortest paths and Voronoi diagrams. In particular, we study road networks as multiscale-dispersed graphs, which is a concept we formalize in terms of disk neighborhood systems. This approach allows us to develop fast algorithms for road networks without making any additional assumptions about the distribution of edge weights. In fact, our algorithms can allow for non-metric weights.

References

[1]
L. Aceto and A. Ingolfsdottir. Computer Scientist: 21st Century Renaissance Man, 2007. http://www.ru.is/faculty/luca/PAPERS/renaissance-man.pdf.
[2]
N. M. Amato, M. T. Goodrich, and E. A. Ramos. A randomized algorithm for triangulating a simple polygon in linear time. Discrete Comput. Geom., 26(2):245--265, 2001.
[3]
D. Armon and J. Reif. A dynamic separator algorithm. In Proc. 3rd Workshop Algorithms Data Struct., volume 709 of Lecture Notes Comput. Sci., pages 107--118. Springer-Verlag, 1993.
[4]
S. Arora and B. Chazelle. Is the thrill gone? Commun. ACM, 48(8):31--33, 2005.
[5]
F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput. Surv., 23(3):345--405, Sept. 1991.
[6]
F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 201--290. Elsevier Science Publishers B. V. North-Holland, Amsterdam, 2000.
[7]
M. Batty and P. Longley. Fractal Cities: A Geometry of Form and Function. Academic Press, 1994.
[8]
P. Bose and L. Devroye. On the stabbing number of a random Delaunay triangulation. Comput. Geom. Theory Appl., 36(2):89--105, 2007.
[9]
B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485--524, 1991.
[10]
B. Chazelle. Could Your iPod Be Holding the Greatest Mystery in Modern Science? MAA Math Horizons (Codes, Cryptography, and National Security), 13, 2006. http://www.cs.princeton.edu/~chazelle/pubs/ipod.pdf.
[11]
B. Chazelle. The Algorithm: Idiom of Modern Science, 2006. http://www.cs.princeton.edu/~chazelle/pubs/algorithm.html.
[12]
Y. H. Chou. Exploring Spatial Analysis in GIS. Onword Press, 1996.
[13]
A. Condon. RNA Molecules: Glimpses Through an Algorithmic Lens. In LATIN 2006: Theoretical Informatics, volume 3887 of Springer LNCS, pages 8--10. Springer, 2006.
[14]
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.
[15]
D. Eppstein. Setting parameters by example. SIAM J. Computing, 32(3):643--653, 2003.
[16]
D. Eppstein, G. L. Miller, and S.-H. Teng. A deterministic linear time algorithm for geometric separators and its applications. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 99--108, 1993.
[17]
M. Erwig. The Graph Voronoi Diagram with Applications. Networks, 36(3):156--163, 2000.
[18]
M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM, 34:596--615, 1987.
[19]
A. V. Goldberg. Scaling algorithms for the shortest paths problem. In SODA '93: Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, pages 222--231, Philadelphia, PA, USA, 1993. Society for Industrial and Applied Mathematics.
[20]
A. V. Goldberg and C. Harrelson. Computing the shortest path: A* search meets graph theory. In SODA '05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 156--165, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.
[21]
M. T. Goodrich. Planar separators and parallel polygon triangulation. J. Comput. Syst. Sci., 51(3):374--389, 1995.
[22]
M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis, and Internet Examples. John Wiley & Sons, New York, NY, 2002.
[23]
M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci., 55(1):3--23, 1997.
[24]
M. Holzer, F. Schulz, D. Wagner, and T. Willhalm. Combining speed-up techniques for shortest-path computations. J. Exp. Algorithmics, 10:2.5, 2005.
[25]
G. A. Klunder and H. N. Post. The shortest path problem on large-scale real-road networks. Networks, 48(4):182--194, 2006.
[26]
P. Koebe. Kontaktprobleme der konformen Abbildung. Ber. Verh. Sächs. Akademie der Wissenschaften Leipzig, Math.-Phys. Klasse, 88:141--164, 1936.
[27]
R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math., 36:177--189, 1979.
[28]
K. Mehlhorn. A Faster Approximation Algorithm for the Steiner Problem in Graphs. Information Processing Letters, 27:125--128, 1988.
[29]
U. Meyer. Single-source shortest-paths on arbitrary directed graphs in linear average-case time. In SODA '01: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 797--806, Philadelphia, PA, USA, 2001. Society for Industrial and Applied Mathematics.
[30]
G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci., 32(3):265--279, 1986.
[31]
G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Geometric separators for finite element meshes. SIAM J. Sci. Comput., 19(2):364--386, 1995.
[32]
G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere-packings and nearest neighbor graphs. J. ACM, 44:1--29, 1997.
[33]
B. Mohar. A polynomial time circle packing algorithm. Discrete Math., 117:257--263, 1993.
[34]
C. Papadimitriou. The Algorithmic Lens: How the Computational Perspective is Transforming the Sciences, 2007. FCRC CCC presentation, http://lazowska.cs.washington.edu/fcrc/Christos.FCRC.pdf.
[35]
R. Raman. Recent results on the single-source shortest paths problem. SIGACT News, 28(2):81--87, 1997.
[36]
P. Sanders and D. Schultes. Highway Hierarchies Hasten Exact Shortest Path Queries. In Proceedings 17th European Symposium on Algorithms (ESA), volume 3669 of Springer LNCS, pages 568--579. Springer, 2005.
[37]
R. Sedgewick and J. S. Vitter. Shortest paths in Euclidean graphs. Algorithmica, 1:31--48, 1986.
[38]
D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci., 26(3):362--381, 1983.
[39]
D. A. Spielman and S.-H. Teng. Disk packings and planar separators. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 349--358, 1996.
[40]
M. Thorup. Undirected single-source shortest paths with positive integer weights in linear time. J. ACM, 46(3):362--394, 1999.
[41]
J. M. Wing. Computational thinking. Commun. ACM, 49(3):33--35, 2006.
[42]
F. B. Zhan and C. E. Noon. Shortest Path Algorithms: An Evaluation Using Real Road Networks. Transportation Science, 32(1):65--73, 1998.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GIS '08: Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information systems
November 2008
559 pages
ISBN:9781605583235
DOI:10.1145/1463434
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 November 2008

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Voronoi diagrams
  2. algorithmic lens
  3. circle arrangements
  4. disk neighborhood systems
  5. multiscale-dispersed graphs
  6. road networks
  7. shortest paths

Qualifiers

  • Research-article

Funding Sources

Conference

GIS '08
Sponsor:

Acceptance Rates

Overall Acceptance Rate 257 of 1,238 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)20
  • Downloads (Last 6 weeks)3
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Route and charging planning for electric vehicles: a multi-objective approachTransportation Letters10.1080/19427867.2024.2315359(1-21)Online publication date: 14-Apr-2024
  • (2023)Opportunistic package delivery as a service on road networksGeoInformatica10.1007/s10707-023-00497-228:1(53-88)Online publication date: 3-Jun-2023
  • (2022)MUSETransportation Science10.1287/trsc.2021.110456:2(436-459)Online publication date: 1-Mar-2022
  • (2022)Robust Routing Using Electrical FlowsACM Transactions on Spatial Algorithms and Systems10.1145/35674219:4(1-25)Online publication date: 11-Oct-2022
  • (2022)Maximal SRLGs Induced by Disks with Radius rRegional Failure Events in Communication Networks10.1007/978-3-031-14256-7_5(33-58)Online publication date: 1-Sep-2022
  • (2021)Fan-crossing free graphs and their relationship to other beyond-planar graphsTheoretical Computer Science10.1016/j.tcs.2021.03.031867(85-100)Online publication date: May-2021
  • (2021)How to Catch Marathon Cheaters: New Approximation Algorithms for Tracking PathsAlgorithms and Data Structures10.1007/978-3-030-83508-8_32(442-456)Online publication date: 31-Jul-2021
  • (2020)Fast Enumeration of Regional Link Failures Caused by Disasters With Limited SizeIEEE/ACM Transactions on Networking10.1109/TNET.2020.300929728:6(2421-2434)Online publication date: Dec-2020
  • (2020)Minimum Ply Covering of Points with Disks and SquaresComputational Geometry10.1016/j.comgeo.2020.101712(101712)Online publication date: Oct-2020
  • (2019)Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined NeighborhoodUrban Science10.3390/urbansci30100283:1(28)Online publication date: 1-Mar-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media