skip to main content
10.1145/1463434.1463504acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
poster

Two-site Voronoi diagrams in geographic networks

Published: 05 November 2008 Publication History

Abstract

We provide an efficient algorithm for two-site Voronoi diagrams in geographic networks. A two-site Voronoi diagram labels each vertex in a geographic network with their two nearest neighbors, which is useful in many contexts.

References

[1]
M. Abellanas, F. Hurtado, V. Sacristán, C. Icking, L. Ma, R. Klein, E. Langetepe, and B. Palop. Voronoi diagram for services neighboring a highway. Inf. Process. Lett., 86(5):283--288, 2003.
[2]
O. Aichholzer, F. Aurenhammer, and B. Palop. Quickest paths, straight skeletons, and the city Voronoi diagram. In SCG '02: Proceedings of the eighteenth annual symposium on Computational geometry, pages 151--159, New York, NY, USA, 2002. ACM.
[3]
F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput. Surv., 23(3):345--405, Sept. 1991.
[4]
F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 201--290. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.
[5]
S. W. Bae and K.-Y. Chwa. Voronoi diagrams with a transportation network on the euclidean plane. In Proc. Int. Symp. on Algorithms and Computation (ISAAC), volume 3341 of LNCS, pages 101--112. Springer, 2004.
[6]
S. W. Bae and K.-Y. Chwa. Shortest paths and Voronoi diagrams with transportation networks under general distances. In Proc. Int. Symp. on Algorithms and Computation (ISAAC), volume 3827 of LNCS, pages 1007--1018. Springer, 2005.
[7]
G. Barequet, M. T. Dickerson, and R. L. S. Drysdale. 2-point site Voronoi diagrams. Discrete Appl. Math., 122(1--3):37--54, 2002.
[8]
G. Barequet, R. L. Scot, M. T. Dickerson, and D. S. Guertin. 2-point site Voronoi diagrams. In SCG '01: Proceedings of the seventeenth annual symposium on Computational geometry, pages 323--324, New York, NY, USA, 2001. ACM.
[9]
B. Chazelle and H. Edelsbrunner. An improved algorithm for constructing kth-order Voronoi diagrams. IEEE Trans. Comput., C-36:1349--1354, 1987.
[10]
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.
[11]
V. T. de Almeida and R. H. Güting. Using Dijkstra's algorithm to incrementally find the k-nearest neighbors in spatial network databases. In SAC '06: Proceedings of the 2006 ACM symposium on Applied computing, pages 58--62, New York, NY, USA, 2006. ACM.
[12]
E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269--271, 1959.
[13]
G. L. Dirichlet. Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J. Reine Angew. Math., 40:209--227, 1850.
[14]
M. Erwig. The graph Voronoi diagram with applications. Networks, 36(3):156--163, 2000.
[15]
S. Fortune. Voronoi diagrams and Delaunay triangulations. In D.-Z. Du and F. K. Hwang, editors, Computing in Euclidean Geometry, volume 1 of Lecture Notes Series on Computing, pages 193--233. World Scientific, Singapore, 1st edition, 1992.
[16]
M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis, and Internet Examples. John Wiley & Sons, New York, NY, 2002.
[17]
F. Hurtado, R. Klein, E. Langetepe, and V. Sacristán. The weighted farthest color Voronoi diagram on trees and graphs. Comput. Geom. Theory Appl., 27(1):13--26, 2004.
[18]
D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wesley, Reading, MA, 1973.
[19]
M. Kolahdouzan and C. Shahabi. Voronoi-based k nearest neighbor search for spatial network databases. In VLDB '04: Proceedings of the Thirtieth international conference on Very large data bases, pages 840--851. VLDB Endowment, 2004.
[20]
D. T. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput., C-31:478--487, 1982.
[21]
K. Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs. Information Processing Letters, 27:125--128, 1988.
[22]
K. Patroumpas, T. Minogiannis, and T. Sellis. Approximate order-k Voronoi cells over positional streams. In GIS '07: Proceedings of the 15th annual ACM international symposium on Advances in geographic information systems, pages 1--8, New York, NY, USA, 2007. ACM.
[23]
M. Safar. K nearest neighbor search in navigation systems. Mob. Inf. Syst., 1(3):207--224, 2005.
[24]
K. Sugihara. Algorithms for computing Voronoi diagrams. In A. Okabe, B. Boots, and K. Sugihara, editors, Spatial Tesselations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester, UK, 1992.
[25]
G. M. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. premier Mémoire: Sur quelques propriétés des formes quadratiques positives parfaites. J. Reine Angew. Math., 133:97--178, 1907.

Cited By

View all

Index Terms

  1. Two-site Voronoi diagrams in geographic networks

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GIS '08: Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information systems
    November 2008
    559 pages
    ISBN:9781605583235
    DOI:10.1145/1463434
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 November 2008

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Voronoi diagrams
    2. geographic graphs
    3. shortest paths

    Qualifiers

    • Poster

    Conference

    GIS '08
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 257 of 1,238 submissions, 21%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)4
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 17 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Multiple Resource Network Voronoi DiagramIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2021.3088147(1-1)Online publication date: 2021
    • (2016)On the Expected Complexity of Voronoi Diagrams on TerrainsACM Transactions on Algorithms10.1145/284609912:3(1-20)Online publication date: 25-Apr-2016
    • (2015)Weighted network Voronoi Diagrams for local spatial analysisComputers, Environment and Urban Systems10.1016/j.compenvurbsys.2015.03.00552(70-80)Online publication date: Jul-2015
    • (2013)On Clustering Induced Voronoi DiagramsProceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science10.1109/FOCS.2013.49(390-399)Online publication date: 26-Oct-2013
    • (2012)On the expected complexity of voronoi diagrams on terrainsProceedings of the twenty-eighth annual symposium on Computational geometry10.1145/2261250.2261266(101-110)Online publication date: 17-Jun-2012
    • (2011)Round-trip voronoi diagrams and doubling density in geographic networksTransactions on Computational Science XIV10.5555/2172419.2172428(211-238)Online publication date: 1-Jan-2011
    • (2010)On the triangle-perimeter two-site Voronoi diagramTransactions on computational science IX10.5555/1986573.1986576(54-75)Online publication date: 1-Jan-2010
    • (2010)On the triangle-perimeter two-site Voronoi diagramTransactions on computational science IX10.5555/1980587.1980590(54-75)Online publication date: 1-Jan-2010
    • (2010)Round-Trip Voronoi Diagrams and Doubling Density in Geographic NetworksProceedings of the 2010 International Symposium on Voronoi Diagrams in Science and Engineering10.1109/ISVD.2010.29(132-141)Online publication date: 28-Jun-2010
    • (2010)On 2-Site Voronoi Diagrams under Arithmetic Combinations of Point-to-Point DistancesProceedings of the 2010 International Symposium on Voronoi Diagrams in Science and Engineering10.1109/ISVD.2010.18(33-41)Online publication date: 28-Jun-2010
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media