skip to main content
research-article

An O(n log n) algorithm for maximum st-flow in a directed planar graph

Published:17 April 2009Publication History
Skip Abstract Section

Abstract

We give the first correct O(n log n) algorithm for finding a maximum st-flow in a directed planar graph. After a preprocessing step that consists in finding single-source shortest-path distances in the dual, the algorithm consists of repeatedly saturating the leftmost residual s-to-t path.

References

  1. Acar, U., Blelloch, G., Harper, R., Vittes, J., and Woo, S. 2004. Dynamizing static algorithms, with applications to dynamic trees and history independence. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 531--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alstrup, S., Holm, J., de Lichtenberg, K., and Thorup, M. 2005. Maintaining information in fully dynamic trees with top trees. ACM Trans. Algor. 1, 2, 243--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Biedl, T., Brejová, B., and Vinař, T. 2000. Simplifying flow networks. In Proceedings of the 25th International Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 192--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dinitz, E. 1970. Algorithm for solution of a problem of maximum flow in networks with power estimation. Sov. Math. Dokl. 11, 1277--1280.Google ScholarGoogle Scholar
  5. Edmonds, J. 1960. A combinatorial representation for polyhedral surfaces. Notices AMS 7, 646.Google ScholarGoogle Scholar
  6. Edmonds, J., and Karp, R. 1972. Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19, 2, 248--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Elias, P., Feinstein, A., and Shannon, C. 1956. A note on the maximum flow through a network. IEEE Trans. Inf. Theory 2, 4, 117--119.Google ScholarGoogle ScholarCross RefCross Ref
  8. Eppstein, D., Italiano, G., Tamassia, R., Tarjan, R., Westbrook, J., and Yung, M. 1990. Maintenance of a minimum spanning forest in a dynamic planar graph. In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fakcharoenphol, J., and Rao, S. 2001. Planar graphs, negative weight edges, shortest paths, near linear time. In Proceedings of the 42th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 232--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ford, C., and Fulkerson, D. 1956. Maximal flow through a network. Canad. J. Math. 8, 399--404.Google ScholarGoogle ScholarCross RefCross Ref
  11. Frederickson, G. 1987. Fast algorithms for shortest paths in planar graphs with applications. SIAM J. Comput. 16, 1004--1022. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Goldberg, A. 1998. Recent developments in maximum flow algorithms. In Proceedings of the 6th Scandinavian Workshop on Algorithm Theory. Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Goldberg, A., and Rao, S. 1998. Beyond the flow decomposition barrier. J. ACM 45, 5, 783--797. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Goldberg, A., and Tarjan, R. 1988. A new approach to the maximum-flow problem. J. ACM 35, 4, 921--940. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Harris, T., and Ross, F. 1955. Fundamentals of a method for evaluating rail net capacities. Research Memorandum RM-1573, The RAND Corporation, Santa Monica, CA.Google ScholarGoogle Scholar
  16. Hassin, R. 1981. Maximum flow in (s,t) planar networks. Inf. Proc. Lett. 13, 107.Google ScholarGoogle ScholarCross RefCross Ref
  17. Hassin, R., and Johnson, D. B. 1985. An O(n log2 n) algorithm for maximum flow in undirected planar networks. SIAM J. Comput. 14, 612--624.Google ScholarGoogle ScholarCross RefCross Ref
  18. Heffter, L. 1891. Über das problem der nachbargebiete. Math. Ann. 38, 477--508.Google ScholarGoogle ScholarCross RefCross Ref
  19. Henzinger, M., and King, V. 1999. Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM 46, 4, 502--516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Henzinger, M. R., Klein, P. N., Rao, S., and Subramanian, S. 1997. Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55, 1, 3--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Itai, A., and Shiloach, Y. 1979. Maximum flow in planar networks. SIAM J. Comput. 8, 135--150.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Johnson, D. B. 1977. Efficient algorithms for shortest paths in sparse graphs. J. ACM 24, 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Johnson, D. B., and Venkatesan, S. 1982. Using divide and conquer to find flows in directed planar networks in O(n3/2 log n) time. In Proceedings of the 20th Annual Allerton Conference on Communication, Control, and Computing. 898--905.Google ScholarGoogle Scholar
  24. Khuller, S., and Naor, J. 1994. Flow in planar graphs with vertex capacities. Algorithmica 11, 3, 200--225.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Khuller, S., Naor, J., and Klein, P. 1993. The lattice structure of flow in planar graphs. SIAM J. Disc. Math. 6, 3, 477--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Klein, P. N. 2005. Multiple-source shortest paths in planar graphs. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 146--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kotzig, A. 1956. Súvislosť a pravidelná súvislosť konečných grafov. Ph.D. dissertation, Vysoká Škola Ekonomická, Bratislava.Google ScholarGoogle Scholar
  28. Miller, G. L., and Naor, J. 1995. Flow in planar graphs with multiple sources and sinks. SIAM J. Comput. 24, 5, 1002--1017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Reif, J. 1983. Minimum s-t cut of a planar undirected network in O(n log2 n) time. SIAM Journal on Computing 12, 71--81.Google ScholarGoogle ScholarCross RefCross Ref
  30. Ripphausen-Lipa, H., Wagner, D., and Weihe, K. 1995. Efficient algorithms for disjoint paths in planar graphs. In Combinatorial Optimization, W. Cook, L. Lovasz, and P. Seymour, Eds. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 20. AMS, 295--354.Google ScholarGoogle Scholar
  31. Schrijver, A. 2002. On the history of the transportation and maximum flow problems. Math. Prog. 91, 3, 437--445.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sleator, D., and Tarjan, R. 1983. A data structure for dynamic trees. J. Comput. Syst. Sci. 26, 3, 362--391. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sommerville, D. 1929. An introduction to the geometry of n dimensions. London.Google ScholarGoogle Scholar
  34. Tarjan, R., and Werneck, R. 2005. Self-adjusting top trees. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 813--822. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Weihe, K. 1997. Maximum (s, t)-flows in planar networks in O(|V|log|V|) time. J. Comput. Syst. Sci. 55, 3, 454--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Whitney, H. 1933. Planar graphs. Fundamenta mathematicae 21, 73--84.Google ScholarGoogle Scholar
  37. Youngs, J. 1963. Minimal imbeddings and the genus of a graph. J. Math. Mech. 12, 303--315.Google ScholarGoogle Scholar

Index Terms

  1. An O(n log n) algorithm for maximum st-flow in a directed planar graph

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Journal of the ACM
      Journal of the ACM  Volume 56, Issue 2
      April 2009
      190 pages
      ISSN:0004-5411
      EISSN:1557-735X
      DOI:10.1145/1502793
      Issue’s Table of Contents

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 April 2009
      • Accepted: 1 December 2008
      • Revised: 1 March 2008
      • Received: 1 September 2006
      Published in jacm Volume 56, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader