
Aspects and Class-based Security

A Survey of Interactions between Advice Weaving and the Java 2 Security Model

Andreas Sewe Christoph Bockisch Mira Mezini

Technische Universität Darmstadt

Hochschulstr. 10, 64289 Darmstadt, Germany

{sewe, bockisch, mezini}@st.informatik.tu-darmstadt.de

Abstract

Various aspect-oriented languages, e.g., AspectJ, Aspect-

Werkz, and JAsCo, have been proposed as extensions to one

particular object-oriented base language, namely Java. But

these extensions do not fully take the interactions with the

Java 2 security model into account. In particular, the im-

plementation technique of advice weaving gives rise to two

security issues: the erroneous assignment of aspects to pro-

tection domains and the violation of namespace separation.

Therefore, a comprehensive discussion of the design choices

available with respect to interactions with the dynamic class

loading facilities of the Java VM is provided.

Categories and Subject Descriptors D.3.2 [Programming

Languages]: Language Classifications—Multiparadigm lan-

guages, Object-oriented languages; D.4.6 [Operating Sys-

tems]: Security and Protection—Access controls

General Terms Languages, Security

Keywords Advice weaving, aspect-oriented programming,

dynamic class loading, Java security model

1. Introduction

The paradigm of aspect-oriented programming (AOP) aims

at the modularization of cross-cutting concerns [13], i.e.,

concerns which cut across modularizations as offered by

other paradigms, e.g., across class hierarchies in the case of

object-oriented programming (OOP). To this end, an aspect

language typically extends a base language rooted in an-

other paradigm with a new kind of module: the aspect. For

various aspect-oriented languages, e.g., for AspectJ [12, 3],

AspectWerkz [7], and JAsCo [18, 19], this base language

was chosen to be Java [10], whose entire security model re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VMIL’08, October 19, 2008, Nashville, TN.
Copyright © 2008 ACM 978-1-60558-384-6. . . $5.00

volves around the sole kind of module known to it: the class.

Thus, the question arises how to best integrate aspects with

Java’s class-centric model in the light of the Java VM’s dy-

namic class loading facility. In this paper we argue for in-

creasing the level of class loader awareness of execution en-

vironments geared towards AOP and show how failure to

do so can have serious security implications. To bolster the

argument we have surveyed the behavior of current imple-

mentations, characterized interactions between classes and

aspects, and identified a desirable design.

The remainder of this paper is structured as follows. Sec-

tion 2 provides background material on two subjects: The

security model of Java is described in Section 2.1, whereas

Section 2.2 describes aspect-oriented programming and the

weaving technique used by its implementations. Section 3

lists the surveyed implementations, before Section 4 char-

acterizes not only the class loading behavior their execution

environments exhibit, but also the design we deem most de-

sirable. Section 5 mentions further implementation issues,

Section 6 cites related work, and Section 7 concludes our

position and gives suggestions for future work.

2. Background

The interactions between aspects and the class-based secu-

rity model of Java are often subtle. It is therefore crucial

to understand both the design of Java’s security model and

common implementation techniques of aspect-oriented lan-

guages.

2.1 The Java 2 Security Model

The Java VM’s facilities for dynamic class loading [14]

are an intrinsic part of the Java 2 security model, col-

loquially called the “Java sandbox.” Said model revolves

around three core components: the SecurityManager,

the AccessController, and the ClassLoader.

2.1.1 Access Control

All operations deemed critical in the core API of Java are

subject to access control; permissions, e.g., to delete a file,

are ultimately granted by a SecurityManager, as is

shown in the following.

1 class File {

2 // ...
3 boolean delete() {

4 SecurityManager m =

5 System.getSecurityManager();

6 Permission p =

7 new FilePermission(this.getPath(),

8 FILE_DELETE_ACTION);

9 if (m != null)

10 m.checkPermssion(p); // May throw SecurityException
11 // Perform delete
12 }

13 }

With the advent of Java 2, this mechanism’s flexibility

has been greatly enhanced by the AccessController

framework for user-defined policies [9]. Hereby the VM’s

SecurityManager bases its decision of whether to grant

a permission both on a user-configurable policy and on the

calling context of the request. To determine the latter, the

AccessController inspects all so-called protection do-

mains recorded on the call stack and grants only those per-

missions afforded by each of them.1 Which domain a frame

belongs to thereby depends on the declaring class of the

frame’s corresponding method; which domain the class in

question belongs to is fixed during class loading, e.g., de-

pending on the source the class’s code has been obtained

from.

2.1.2 Dynamic Class Loading

Class loaders have been introduced to the Java security

model in order to facilitate multiple namespaces, a user-

definable class loading policy, and type-safe linkage in the

presence of lazy loading [14]. They are responsible for re-

solving symbolic references [15, §5.1], i.e., fully qualified

class names, to Class instances. Furthermore, it is among

the class loaders’ responsibilities to assign any newly de-

fined class to a protection domain. Since class loaders thus

form one of the corner stones of Java’s security model, both

the creation of and access to class loaders are controlled by

a SecurityManager.

The ability to create ClassLoader instances also en-

tails the ability to define new namespaces which can cleanly

separate trusted from untrusted classes. This is possible

since a class’s identity is not uniquely determined by its

name alone; at least at run-time class loaders need also

be taken into account. This is exemplified by Figure 1,

which depicts a typical class loader hierarchy in which

the class loader instances AppletClassLoader@5 and

AppletClassLoader@6 are used to separate the Java

applets defined by them not only from one another but also

from other parts of the application; classes defined by the

two instances are, e.g., unable to refer to classes defined by

either URLClassLoader as they reside within different

branches of the class loader hierarchy.

1 Privileged actions, which exempt parts of the call stack from inspection,

are beyond the scope of this paper (cf. Section 7).

bootstrap class loader

ExtClassLoader@1

AppClassLoader@2

URLClassLoader@3 AppletClassLoader@6

AppletClassLoader@5

URLClassLoader@4

Figure 1: A class loader hierarchy, rooted at the bootstrap

class loader [15, §5.3.1] and defining two separate names-

paces for Java applets.

This behavior in which classes can refer only to classes

defined by their own class loader or one of its ancestors in the

hierarchy is only a convention—although one almost uni-

versally obeyed. What ultimately determines the Class re-

turned upon a call to a class loader’s loadClass2 method

is up to its (user-definable) implementation. Typically, this

initiating class loader first delegates to its parent class loader

before attempting to define the class on its own by means of

its defineClass method. There are exceptions, though:

Servlet containers follow the so-called delegation inversion

model, which behaves the other way around—but can be em-

ulated by the standard delegation model. But regardless of

how delegation is handled, the Java VM places constraints

upon loading which ensure type-safe linkage [15, §5.3.4];

thus, any delegation model is merely a set of guidelines on

how to fulfill these constraints.

Even though these guidelines may appeal to our intuition

of a class loader hierarchy, we cannot rely on any such be-

havior; thus, we have to adopt the following definitions [15,

§5.3] and notation [14] to precisely describe class loading.

Definition 2.1. Let c = l.loadClass(”C”). Then l is

said to be the initiating class loader of the class c.

Definition 2.2. Let c = lc.defineClass(”C”). Then lc
is said to be the defining class loader of the class c, i.e., lc
defines c.

Note that due to delegation there may be multiple initiat-

ing class loaders of a class; however, for any class c there is

always a single defining class loader lc.

Notation 2.1. A class named ”C” is denoted by ⟨”C”, lc⟩l,
if lc and l are its defining and initiating class loaders, re-

2 All attempts to load a class dynamically are channeled through the

loadClass method; the well-known Class.forName, e.g., simply de-

fers class loading to this method.

spectively. If clear from context, this will be abbreviated to

⟨”C”, lc⟩ or ⟨”C”⟩l.

2.2 Aspect-oriented Programming

In AOP’s pointcut-and-advice flavor [16], which will be

the focus of this paper, aspects affect the execution of so-

called join points, e.g., calls to methods or accesses of fields.

Hereby pointcuts select a set of join points at which—in

addition to the action of the join point itself, i.e., the method

call or field access—additional actions are to be performed

in the form of so-called advice.

The following fragment exemplifies this; it defines a

pointcut together with its associated advice which intercepts

all calls to delete in order to subject this file I/O opera-

tion to access control as described in Section 2.1.1. Hereby

the call atomic pointcut determines the join point shadow,

i.e., the actual call instructions at which the advice will take

effect, whereas the target atomic pointcut binds a context

value, namely the callee. If permission is granted, the advice

proceeds to the intercepted method, i.e., to delete().

1 aspect AccessControl {

2 around(File f) : call(File.delete())

3 && target(f) {

4 SecurityManager m =

5 System.getSecurityManager();

6 Permission p =

7 new FilePermission(f.getPath(),

8 FILE_DELETE_ACTION);

9 if (m != null)

10 m.checkPermssion(p); // May throw SecurityException
11 proceed(f); // Proceed with f.delete()
12 }

13 }

The above illustrates the usefulness of the aspect-oriented

paradigm to modularize cross-cutting concerns like access

control, which would otherwise be tangled with code imple-

menting totally unrelated concerns, e.g., performing file I/O.

In order to realize these semantics on top of the Java

platform, implementations of aspect-oriented languages (cf.

Section 3) typically “weave” a call to a synthetic advice

method into the code of the base program [11], thereby

altering classes other than the aspect; this is illustrated by

the listing below, which completely replaces all calls to

delete().3

1 AccessControl a = AccessControl.aspectOf();

2 a.around$1(f, new AroundClosure$2());

Code like the above is generated at different times by dif-

ferent implementations, e.g., at compile-time, post-compile-

time, load-time, or run-time. For the purpose of this discus-

sion, the former two options have the same implications and

will therefore be subsumed under the term static weaving.

While they are altogether ignorant of dynamic class loading,

it is impossible to weave into classes from a code source dif-

3 For readability, the listing is presented as Java source code, even though

advice weaving is typically performed at the level of Java bytecode.

ferent from the aspect’s. Since consequently only the secu-

rity considerations for ordinary Java apply in this case, static

weavers have been excluded from the survey.

Like compile-time and post-compile-time weavers, load-

time and run-time weavers share a number of characteristics

and will henceforth be subsumed under the term dynamic

weaving. In contrast to run-time weaving load-time weav-

ing has one caveat [2]: “All aspects to be used for weaving

must be defined to the weaver before any types to be wo-

ven are loaded.” This applies not only to AspectJ, whose

Development Environment Guide this quote is taken from,

but to other languages supporting load-time weaving as well,

for otherwise classes may be “missed by [weaving] aspects

added later, with the result that invariants across types fail.”

3. Surveyed Implementations

We have surveyed the latest incarnations of several aspect-

oriented languages all of which support dynamic weaving.

3.1 AspectJ 1.6

The AspectJ programming language [12] is arguably the

most prominent aspect-oriented language, whose implemen-

tations can utilize not only compile-time and post-compile

time weaving but also load-time weaving. Furthermore, two

alternative implementations of the latter exist: One uses a

Java 5 agent and one uses a custom class loader. Both im-

plementations take dynamic class loading into account; it is

thus claimed [2] that they “compl[y] with the Java 2 security

model.” Of these implementations the agent-based one has

been our main object of study. Not only is it the most recent,

but also not subject to further issues as described in Sec-

tion 5; it applies a class file transformation upon class def-

inition but does not otherwise interfere with dynamic class

loading.

3.2 AspectWerkz 2.0

In contrast to AspectJ, AspectWerkz [7] is not so much an

aspect-oriented language but a framework. Still, just as for

AspectJ, class-loader aware implementations exist. In fact,

AspectWerkz comes with a number of alternative implemen-

tations of run-time weaving. Several of these are specific to

a single VM, e.g., to the JRockit or HotSpot VM [17]. One

implementation, however, is universally available across all

VMs supporting the Java 5 platform. Consequently, this

agent-based implementation has been surveyed.

3.3 JAsCo 0.8.7

The design goal of the JAsCo language [18] was to com-

bine aspect-oriented and component-based software devel-

opment. As the latter typically makes—at least in a Java

environment—heavy use of dynamic class loading, it stands

to reason that JAsCo should have a high level of class loader

awareness. Beyond mere static weaving JAsCo also offers

two implementations supporting run-time weaving by means

of HotSwap or a Java 5 agent. As the former implementation

is marked deprecated, we have chosen the latter.

4. Characterization of Class Loading

Behavior

The presence of protection domains and class loaders [9, 14]

within the Java VM gives rise to two crucial questions:

Which protection domain ought aspects be assigned to? And

which classes ought to be affected by which aspects? While

Section 4.1 answers the former question, Section 4.2 at-

tempts an answer to the latter.

4.1 Protection Domain Assignment

As the protection domains are assigned by the class loader

and all surveyed implementations compile aspects to ordi-

nary class files, it is natural that an aspect gets assigned a

protection domain based on the source of said file. But while

this assignment seemingly integrates aspects with the Java

security model, it is oftentimes jeopardized by the weaving

technique used.

The reason for this is that optimizing weavers may decide

to replace the call to the synthetic advice method (cf. Sec-

tion 2.2) with the advice body itself. This implementation

technique, known as inlining [4], severs the link of an aspect

to its protection domain; the advice’s code becomes part of

the join point shadow’s class. As such it belongs to the lat-

ter’s protection domain in the eyes of the VM. This fact can

be exploited by an aspect which is woven into a trusted class.

Due to inlining the aspect’s protection domain is no longer

recorded on the call stack when the inlined advice’s action

is performed; consequently, all permissions granted to the

trusted class are granted to the aspect as well. To prevent this

escalation of privileges we therefore postulate that code con-

tributed by an aspect should always be treated as belonging

to that aspect’s protection domain. This is feasible even in

the presence of inling as virtual machines already cope with

similar situations by maintaining a mapping from machine

code addresses to methods [1, 17].

It should be noted that the above issue is independent of

the issues surrounding privileged aspects [8],4 which

allow an aspect to call methods or access fields otherwise

inaccessible to it. In contrast to access modifiers of method

or fields, protection domains control, e.g., whether a file I/O

operation may be performed; thus, they govern a different

set of privileges.

4.2 Namespace Separation

In addition to the above issue, inlining may violate names-

pace separation: When resolving symbolic references an in-

lined advice would use the join point shadow’s defining class

loader instead of the class loader its declaring aspect is de-

fined by. Similar to the issue of protection domain assign-

4 Privileged aspects are not to be confused with privileged actions.

ment all code contributed by an aspect should thus be as-

signed the aspect’s defining class loader.

But irrespectively of the weaving technique used, there

is the more general question of which aspects may affect

which classes. When addressing this question, it is useful

to abandon the notion of weaving (cf. Section 2.2) for the

moment, and rather discuss design decisions in terms of

virtual method calls alone,5 as they ultimately give rise to

the join points in question.

Consequently we focus on the three classes involved dur-

ing method dispatch: the caller’s dynamic type, the callee’s

static type, and the callee’s dynamic type. Of these only

the former two are decisive during resolution [15, §5.4.3],

whereas the latter is not considered by the Java VM when

resolving the symbolic reference. The callee’s dynamic type

is, however, useful when deciding whether a method call like

f.delete() ought to be advised or not—at least, the ex-

istence of execution atomic pointcuts [5] in all surveyed

languages stipulates this. Consequently, we take all three

types and their class loaders into account. Hereby, b will de-

note the dynamic type of the caller in the base program, c

will denote the static type of the callee, and d will denote the

dynamic type of the callee. Their defining class loaders will

be denoted by lb, lc, and ld.

Utilizing the notation introduced in Section 2 we now de-

fine four cases which describe the relative position of two

class loaders la, lz in the class loader hierarchy—under the

assumption that the standard delegation model is adhered

to. If not, the definitions below approximate the class load-

ers’ relationship as suggested by the names chosen. So, let

a = ⟨”A”, la⟩ and z = ⟨”Z”, lz⟩.

Same The equation la = lz captures the simplest case possi-

ble: Both classes are defined by the same class loader.

Ancestor-or-same This case, denoted by la ≽ lz , is defined

by the equation a = ⟨”A”⟩lz . Under the above assumption

it reflects the intuition that the class loader la resides

above lz in the hierarchy. (Ancestor, denoted by la ≻ lz ,

is defined analogously.)

Descendant-or-same This case, denoted by la ≼ lz , is de-

fined by the equation z = ⟨”Z”⟩la and reflects the intuition

of la residing below lz in the hierarchy. (The analogously

defined Descendant is denoted by la ≺ lz .)

Sibling If neither of the above three equations holds, la
and lz are assumed to reside in different branches of the

hierarchy. This case is denoted by la Ç lz .

Note that neither ≽ nor ≼ are guaranteed to be transitive if

the standard delegation model is not adhered to. If the above

assumption holds, however, transitivity does hold as well. In

the following we will indicate this by a distinct notation: ⩾
and ⩽.

5 The discussion carries over to field accesses and static method calls.

AspectJ Desired

lb lc ld AspectWerkz JAsCo Design

la

> > > 3 3 7

< < < 7 7 7

Ç < < 7 7 7

< < Ç 7 7 7

Ç < Ç 7 7 7

Ç Ç Ç 7 7 7

⩾ ⩽ ⩾ 3 3 3

⩾ < < 3call 7 3

⩾ < Ç 3call 7 3

< < ⩾ 3execution 3 3

Ç < ⩾ 3execution 3 3

Table 1: The class loading behavior exhibited by imple-

mentations of aspect-oriented languages. (AspectJ and As-

pectWerkz exhibit the same behavior and are thus sub-

sumed.)

For all relations of the class loaders lb, lc, ld to an as-

pect’s class loader la Table 1 shows whether AspectJ, As-

pectWerkz, and JAsCo allow or disallow advice weaving.

The rightmost column hereby shows the class loading be-

havior we deem most desirable and which will be argued

for in the following. Note that certain combinations are not

shown, as the constraints imposed by the Java VM during

class loading require that lb ≼ lc and lc ≽ ld.

According to the AspectJ language’s Development Envi-

ronment Guide [2] “[a] class loader may only weave classes

that it defines.” This statement is, however, grossly mislead-

ing. As Table 1 shows, execution environments for AspectJ

do in many case weave calls when the aspect has been de-

fined by a class loader different from the base program’s.

The above quote can only be understood in the context of

the following rule: “All aspects visible to the weaver are us-

able. A visible aspect is one defined by the weaving class

loader or one of its parent class loaders.” Thus, advising a

call made by b is allowed whenever la ≽ lb.

As can be seen in the table’s first row, each surveyed im-

plementation weaves advice if the aspect’s class loader la is

an ancestor of the other three class loaders lb, lc, ld. How-

ever, we deem this behavior undesirable as it allows an as-

pect a to advise method calls even if symbolic references

to methods declared by c are not resolvable since la > lc
implies that la ⋠ lc. This behavior then conflicts with the

semantics Java as a base language exhibits in the light of re-

flection: It is not possible for a class a to obtain reflective ac-

cess to a method declared by c. Weaving is also undesirable

in situations where all three class loaders lb, lc, ld are ances-

tors or siblings of la, as this would allow an aspect loaded

by la to affect the behavior of classes loaded by the boot-

strap class loader or comprising an applet container as well

as other applets (cf. Figure 1). In fact, none of the surveyed

implementations exhibits this behavior.

All other situations shown are desirable and for the most

part supported by AspectJ, AspectWerkz, and JAsCo. The

situations where la ⩾ lb, la < lc, and la < ld or la Ç ld, how-

ever, are only partly supported by AspectJ and AspectWerkz

and unsupported by JAsCo. Situations like these occur, e.g.,

if an applet managed by a container calls to a system class,

and said container attempts to advise these calls to introduce

access control (cf. Section 2.2). In AspectJ and AspectWerkz

this is only possible by means of a call atomic pointcut,

but not by an execution one, as the former causes advice

weaving in the caller’s class, whereas the latter weaves into

the dynamic callee’s class [5]. As JAsCo consistently per-

forms execution-style weaving [19], this situation cannot

be coped with by JAsCo. Similar restrictions apply to situ-

ations where la < lc, la ⩾ ld, and la < lb or la Ç lb; they

occur, e.g., if an applet registers a call-back with a system

class. Hereby, the call-back’s interface, i.e., its static type,

is defined by the system class loader lc and the call-back’s

implementation, i.e., its dynamic type, is defined by the ap-

plet’s class loader ld. The situation in the last row is of spe-

cial interest, as weaving may violate the loading constraints

imposed by the Java VM [15, §5.3.4] if the pointcut binds

context relating to the (invisible) caller.

The main characteristic of the desired situations shown in

Table 1 is that the aspect is visible from either the caller’s or

the callee’s point of view: la ≽ lb or la ≽ ld; this character-

izes not all such situations, however, as the table’s first row is

exceptional. Furthermore, the table contains only those situ-

ations which may occur when adhering to the standard del-

egation model; pathological cases where, e.g., both la ≻ lb
and la ≺ lb hold have been omitted.6

5. Further Issues

As mentioned in Section 3.1, AspectJ also comes with an

implementation performing load-time weaving by means of

a custom class loader. This implementation has one serious

limitation, though: Maintaining multiple namespaces by us-

ing a hierarchy of class loaders is impossible. This is due

to the fact that advice are woven by the defineClass

method of the custom WeavingURLClassLoader. Thus,

in order for a class to be affected, it has to be defined by this

loader, which effectively supplants Java’s application class

loader. However, as the defining class loader, together with

the fully qualified name, determines a class’s identity, it is

outright impossible to use two classes with the same fully

qualified name (cf. Section 2.1.2); in a sense, the class loader

hierarchy collapses into a single class loader.

6 The complete data and the survey’s setup are available to the public:

http://www.st.informatik.tu-darmstadt.de/static/

pages/projects/ALIA/alia.html.

Another issue is the requirement imposed by the dynamic

weavers of both AspectJ and AspectWerkz to declare as-

pects in an aop.xml resource which accompanies the as-

pect’s class file. Thus, the question arises whether the

class loader lr loading the resource or the class loader la
defining the aspect’s class determines the protection domain

the aspect is assigned to. While it may seem reasonable to

enforce the condition la = lr, this class loading constraint

prevents a valid use case: An aspect in a library defined by

an ancestor class loader can selectively be enabled by declar-

ing its use in an aop.xml file. Therefore, la ≽ lr may be an

alternative constraint well worth considering.

Finally, one noteworthy difference of JAsCo to the cor-

responding implementations of AspectJ and AspectWerkz

is that JAsCo requires all so-called connectors, which en-

able JAsCo’s aspects, to be loadable by the application class

loader. As a direct consequence of this restriction, every as-

pect resides along with its connectors in the class loader hi-

erarchy at the highest level reachable by ordinary application

classes. But this severely limits the possibility to introduce

aspect libraries and aspectual containers into the class loader

hierarchy.

6. Related Work

While all of the surveyed aspect-oriented languages provide

implementations which are aware of the Java VM’s class

loading facilities, little has been published on the design

decisions beyond the level of developer documentation [2].

The need for controlling advice weaving, however, has been

acknowledged and led to the proposal of a so-called aspect

permission system [8]. The proposed system would ideally

extend Java’s AccessController framework (cf. Sec-

tion 2.1.1) with permissions controlling whether a particular

method call may be advised or not.

While this level of control may be useful, the use of the

aforementioned framework requires not only a fine-grained

policy, but also restricts the policy to one of “default deny.”

This generally is a sensible choice. It can be problematic

when controlling advice, however, as one of the benefits of

AOP is that often the base program can be oblivious of the

aspects applied. Such obliviousness would be compromised

if permissions needed to be granted to each aspect explicitly.

Whether a policy of “default allow” is more desirable is,

however, open to debate. In either case, restricting advice

weaving by means of the namespace separation offered by

Java’s dynamic class loading facility nicely complements an

aspect permission system as it offers a more coarse-grained

mechanism.

7. Conclusion and Future Work

We have shown two shortcomings in the class loading be-

havior of several existing execution environments for as-

pect languages based on Java: A protection domain may

be erroneously assigned when advice is inlined and names-

pace separation cannot always be guaranteed. Furthermore,

we have identified both desirable and undesirable behavior

for dynamic weaving in the presence of class loaders and

characterized it analogously to virtual method calls. The de-

sired design has been characterized by two simple conditions

based on the static and dynamic type of the callee at join

points. In particular, these conditions abstract away from

implementation issues like the distinction between call

and execution join points, which would introduce fur-

ther subtleties [5] to the already subtle matter of dynamic

class loading. We hope that a unified concept, e.g., virtual

join points [6], will help to further clarify and formalize

the class loading behavior of Java-based aspect-oriented lan-

guages. For the moment, however, we propose that the fol-

lowing guidelines be followed when implementing any form

of dynamic weaving.

• Advice must be executed within the protection domain of

its declaring aspect.

• Advice must resolve symbolic references with the class

loader of its declaring aspect.

• Aspects should affect only method calls when visible to

the caller’s or callee’s dynamic type—unless the callee’s

static type is in turn invisible to the aspect.

However, further design choices still need to be made.

We thus seek to establish answers for the following three

questions: If aspects are declared and defined by different re-

sources, should constraints on the class loaders be enforced?

How to best integrate an aspect permission system with

class-based security? And how to secure advice weaving at

privileged actions? Answering these questions can guide im-

plementers to aspect languages which fully comply with the

security model of the Java language.

Acknowledgments

This work was supported by the AOSD-Europe Network

of Excellence, European Union grant no. FP6-2003-IST-2-

004349.

References

[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith,

T. Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd, and

M. Mergen. Implementing Jalapeño in Java. In Proceedings

of the 14th Conference on Object-oriented Programming,

Systems, Languages, and Applications, 1999.

[2] The AspectJ Project. The AspectJ Development Environment

Guide. http://www.eclipse.org/aspectj/doc/

released/devguide/.

[3] The AspectJ Project. The AspectJ Programming Guide.

http://www.eclipse.org/aspectj/doc/

released/progguide/.

[4] P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins,

J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam,

and J. Tibble. Optimising AspectJ. ACM SIGPLAN Notices,

40(6), 2005.

[5] O. Barzilay, Y. A. Feldman, S. Tyszberowicz, and A. Yehudai.

Call and execution semantics of AspectJ. In Proceedings

of the 3rd Workshop on Foundations of Aspect-oriented

Languages, 2004.

[6] C. Bockisch, M. Haupt, and M. Mezini. Dynamic virtual

join point dispatch. In Proceedings of the 4th Workshop on

Software Engineering Properties of Languages and Aspect

Technologies, 2006.

[7] J. Bonér. AspectWerkz. In Proceedings of the 3rd Conference

on Aspect-oriented Software Development, 2004.

[8] B. de Win, F. Piessens, and W. Joosen. How secure is AOP

and what can we do about it? In Proceedings of the 2006

Workshop on Software Engineering for Secure Systems, 2006.

[9] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.

Going beyond the sandbox: An overview of the new security

architecture in the Java development kit 1.2. In Proceedings

of the USENIX Symposium on Internet Technologies and

Systems, 1997.

[10] J. Gosling, W. N. Joy, G. L. Steele, and G. Bracha. The Java

Language Specification. Addison-Wesley, 3rd edition, 2005.

[11] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ.

In Proceedings of the 3rd Conference on Aspect-oriented

Software Development (AOSD), 2004.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. G. Griswold. An overview of AspectJ. In Proceed-

ings of the 15th European Conference on Object-oriented

Programming, 2001.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented

programming. In Proceedings of the 11th European

Conference on Object-oriented Programming, 1997.

[14] S. Liang and G. Bracha. Dynamic class loading in the Java

virtual machine. In Proceedings of the 13th Conference

on Object-oriented Programming, Systems, Languages, and

Applications, 1998.

[15] T. Lindholm and F. Yellin. The Java Virtual Machine

Specification. The Java Series. Prentice Hall, 2nd edition,

1999.

[16] H. Masuhara and G. Kiczales. Modeling crosscutting in

aspect-oriented mechanisms. In Proceedings of the 17th

European Conference on Object-oriented Programming,

2003.

[17] Sun Microsystems. The Java HotSpot Server VM.

http://java.sun.com/products/hotspot/

docs/general/hs2.html.

[18] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:

an aspect-oriented approach tailored for component based

software development. In Proceedings of the 2nd Conference

on Aspect-oriented Software Development, 2003.

[19] System and Software Engineering Lab, Vrije Universiteit

Brussel. JAsCo language reference 0.8.6. http://ssel.

vub.ac.be/jasco/lib/exe/fetch.php?media=

documentation%3Ajasco.pdf.

