skip to main content
10.1145/1508044.1508045acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Advanced illumination techniques for GPU volume raycasting

Published: 10 December 2008 Publication History

Abstract

Volume raycasting techniques are important for both visual arts and visualization. They allow an efficient generation of visual effects and the visualization of scientific data obtained by tomography or numerical simulation. Thanks to their flexibility, experts agree that GPU-based raycasting is the state-of-the art technique for interactive volume rendering. It will most likely replace existing slice-based techniques in the near future. Volume rendering techniques are also effective for the direct rendering of implicit surfaces used for soft body animation and constructive solid geometry.
The lecture starts off with an in-depth introduction to the concepts behind GPU-based ray-casting to provide a common base for the following parts. The focus of this course is on advanced illumination techniques which approximate the physically-based light transport more convincingly. Such techniques include interactive implementation of soft and hard shadows, ambient occlusion and simple Monte-Carlo based approaches to global illumination including translucency and scattering.
With the proposed techniques, users are able to interactively create convincing images from volumetric data whose visual quality goes far beyond traditional approaches. The optical properties in participating media are defined using the phase function. Many approximations to the physically based light transport applied for rendering natural phenomena such as clouds or smoke assume a rather homogenous phase function model. For rendering volumetric scans on the other hand different phase function models are required to account for both surface-like structures and fuzzy boundaries in the data. Using volume rendering techniques, artists who create medical visualization for science magazines may now work on tomographic scans directly, without the necessity to fall back to creating polygonal models of anatomical structures.

References

[1]
Michael D. Adams. The JPEG-2000 Still Image Compression Standard. ISO/IEC (ITU-T SG8), September 2001. JTC 1/SC 29/WG 1: N 2412.
[2]
Chandrit Bajaj, Insung Ihm, and Sanghun Park. 3D RGB image compression for interactive applications. ACM Transactions on Graphics, 20(1):10--38, January 2001.
[3]
Kevin M. Beason, Josh Grant, David C. Banks, Brad Futch, and M. Yousuff Hussaini. Pre-computed illumination for isosurfaces. In VDA '94: Proceedings of the conference on Visualization and Data Analysis '06 (SPIE Vol. 6060), pages 1--11, 2006.
[4]
Uwe Behrens and Ralf Ratering. Adding shadows to a texture-based volume renderer. In VVS '98: Proceedings of the 1998 IEEE symposium on Volume visualization, pages 39--46. ACM Press, 1998.
[5]
Johanna Beyer, Markus Hadwiger, Torsten Möller, and Laura Fritz. Smooth Mixed-Resolution GPU Volume Rendering. In IEEE/EG International Symposium on Volume and Point-Based Graphics, pages 163--170, 2008.
[6]
Praveen Bhaniramka and Yves Demange. OpenGL Volumizer: A Toolkit for High Quality Volume Rendering of Large Data Sets. In Proceedings IEEE Visualization 2002, pages 45--53, 2002.
[7]
J. F. Blinn. Jim blinn's corner: Image compositing--theory. IEEE Computer Graphics and Applications, 14(5), 1994.
[8]
Imma Boada, Isabel Navazo, and Roberto Scopigno. Multiresolution volume visualization with a texture-based octree. The Visual Computer, 17:185--197, 2001.
[9]
A. R. Calderbank, Ingrid Daubechies, Wim Sweldens, and Boon-Lock Yeo. Wavelet transforms that map integers to integers. Technical report, Department of Mathematics, Princeton University, August 1996.
[10]
N. Carr, J. Hall, and J. Hart. GPU Algorithms for Radiosity and Subsurface Scattering. In Proc. Graphics Hardware, 2003.
[11]
Nathan A. Carr, Jesse D. Hall, and John C. Hart. GPU algorithms for radiosity and subsurface scattering. In HWWS '03: Proceedings of the conference on Graphics Hardware '03, pages 51--59. Eurographics Association, 2003.
[12]
Yi-Jen Chiang, Cláudio T. Silva, and William J. Schroeder. Interactive out-of-core isosurface extraction. In Proceedings of IEEE Visualization '98, pages 167--174, 1998.
[13]
Yi-Jen Chiang, Cludio T. Silva, and Willam J. Schroeder. Interactive out-of-core isosurface extraction. In Proceedings IEEE Visualization 1998, pages 167--174, 530, 1998.
[14]
M. Colbert and J. Křivánek. GPU Gems 3, chapter GPU-Based Importance Sampling, pages 459--475. Addison-Wesley, 2007.
[15]
Michael Cox and David Ellsworth. Application-controlled demand paging for out-of-core visualization. In Proceedings IEEE Visualization 1997, pages 235--244, 1997.
[16]
Franklin C. Crow. Shadow algorithms for computer graphics. In SIGGRAPH '77: Proceedings of the 4th annual conference on Computer graphics and interactive techniques, pages 242--248. ACM Press, 1977.
[17]
Franklin C. Crow. Summed-area tables for texture mapping. In Proceedings SIGGRAPH '84, volume 18, pages 207--212, 1984.
[18]
Carsten Dachsbacher and Marc Stamminger. Splatting indirect illumination. In I3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, pages 93--100, New York, NY, USA, 2006. ACM.
[19]
Ingrid Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 1992.
[20]
Philippe Desgranges and Klaus Engel. US patent application 2007/0013696 A1: Fast ambient occlusion for direct volume rendering, 2007.
[21]
Philippe Desgranges, Klaus Engel, and Gianluca Paladini. Gradient-free shading: A new method for realistic interactive volume rendering. In VMV '05: Proceedings of the international fall workshop on Vision, Modeling, and Visualization, pages 209--216, 2005.
[22]
C. Donner and H. W. Jensen. Light Diffusion in Multi-Layered Translucent Materials. In Proc. ACM SIGGRAPH, 2005.
[23]
R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. In Proceedings of SIGGRAPH '88, pages 65--74, 1988.
[24]
D. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing and Modeling: A Procedural Approach. Academic Press, July 1998.
[25]
Klaus Engel, Markus Hadwiger, Joe Kniss, Christof Rezk-Salama, and Daniel Weiskopf. Real-Time Volume Graphics. AK Peters, 2006.
[26]
James D. Foley, Richard L. Phillips, John F. Hughes, Andries van Dam, and Steven K. Feiner. Introduction to Computer Graphics. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1994.
[27]
Jinzhu Gao, Jian Huang, C. Ryan Johnson, and Scott Atchley. Distributed data management for large volume visualization. In Proceedings IEEE Visualization 2005, pages 183--189. IEEE, 2005.
[28]
Jinzhu Gao, Jian Huang, Han-Wei Shen, and James Arthur Kohl. Visibility culling using plenoptic opacity functions for large volume visualization. In Proceedings IEEE Visualization 2003, pages 341--348. IEEE, 2003.
[29]
Jinzhu Gao, Han-Wei Shen, Jian Huang, and James Arthur Kohl. Visibility culling for time-varying volume rendering using temporal occlusion coherence. In Proceedings IEEE Visualization 2004, pages 147--154. IEEE, 2004.
[30]
S. Grimm, S. Bruckner, A. Kanitsar, and E. Gröller. Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data. In Proceedings IEEE/SIGGRAPH Symposium on Volume Visualization and Graphics, pages 1--8, 2004.
[31]
Sören Grimm, Stefan Bruckner, Armin Kanitsar, and Eduard Gröller. Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data. In Proceedings IEEE Volume Visualization and Graphics Symposium, pages 1--8, 2004.
[32]
Sören Grimm, Stefan Bruckner, Armin Kanitsar, and Eduard Gröller. A refined data addressing and processing scheme to accelerate volume raycasting. Computers and Graphics, 28:719--729, 2004.
[33]
Stefan Guthe and Wolfgang Straßer. Real-time decompression and visualization of animated volume data. In Proceedings IEEE Visualization 2001, pages 349--356, 2001.
[34]
Stefan Guthe and Wolfgang Strasser. Advanced techniques for high quality multiresolution volume rendering. In Computers & Graphics, volume 28, pages 51--58. Elsevier Science, February 2004.
[35]
Stefan Guthe, Michael Wand, Julius Gonser, and Wolfgang Straßer. Interactive rendering of large volume data sets. In Proceedings IEEE Visualization 2002, pages 53--60, 2002.
[36]
Attila Gyulassy, Lars Linsen, and Bernd Hamann. Time- and space-efficient error calculation for multiresolution direct volume rendering. In Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Springer-Verlag, Heidelberg, Germany, 2006.
[37]
M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross. Real-time ray-casting and advanced shading of discrete isosurfaces. In Proceedings of Eurographics 2005, pages 303--312, 2005.
[38]
M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross. Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces. In Proceedings of Eurographics, pages 303--312, 2005.
[39]
Markus Hadwiger, Andrea Kratz, Christian Sigg, and Katja Bühler. Gpu-accelerated deep shadow maps for direct volume rendering. In GH '06: Proceedings of the 21st ACM SIGGRAPH/Eurographics symposium on Graphics hardware, pages 49--52, New York, NY, USA, 2006. ACM Press.
[40]
W. Heidrich and H.-P. Seidel. Realistic, Hardware-accellerated Shading and Lighting. In Proc. ACM SIGGRAPH, 1999.
[41]
L. Henyey and J. Greenstein. Diffuse radiation in the galaxy. Astrophysical Journal, pages p. 70--83, 93.
[42]
Frida Hernell, Patric Ljung, and Anders Ynnerman. Efficient ambient and emissive tissue illumination using local occlusion in multiresolution volume rendering. In Proceedings Eurographics/IEEE-VGTC Symposium on Volume Graphics. Eurographics/IEEE, 2007.
[43]
Frida Hernell, Patric Ljung, and Anders Ynnerman. Interactive Global Light Propagation in Direct Volume Rendering using Local Piecewise Integration. In IEEE/EG International Symposium on Volume and Point-Based Graphics, pages 105--112, 2008.
[44]
W. Hong, F. Qiu, and A. Kaufman. Gpu-based object-order ray-casting for large datasets. In Proceedings of Volume Graphics 2005, 2005.
[45]
Insung Ihm and Sanghun Park. Wavelet-based 3d compression scheme for interactive visualization of very large volume data. Computer Graphics Forum, 18(1):3--15, 1999.
[46]
Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. A Practical Model for Subsurface Light Transport. In Proceedings of ACM SIGGRAPH, pages 511--518, 2001.
[47]
Ralf Kähler, John Wise, Tom Abel, and Hans-Christian Hege. Gpu-assisted raycasting for cosmological adaptive mesg refinement simulations. In Proceedings Eurographics/IEEE Workshop on Volume Graphics 2006, pages 103--110, 144, 2006.
[48]
D. Kalra and A. H. Barr. Guaranteed ray intersections with implicit surfaces. In Proceedings of SIGGRAPH '89, pages 297--306, 1989.
[49]
A. Kaufman. Voxels as a Computational Representation of Geometry. In The Computational Representation of Geometry. SIGGRAPH '94 Course Notes, 1994.
[50]
Tae-Yong Kim and Ulrich Neumann. Opacity shadow maps. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques, pages 177--182, London, UK, 2001. Springer-Verlag.
[51]
Joe Kniss, Gordon Kindlmann, and Charles Hansen. Multidimensional transfer functions for interactive volume rendering. IEEE Transactions on Visualization and Computer Graphics, 8(3):270--285, 2002.
[52]
Joe Kniss, Simon Premoze, Charles Hansen, and David Ebert. Interactive translucent volume rendering and procedural modeling. In VIS '02: Proceedings of the conference on Visualization '02, pages 109--116. IEEE Computer Society, 2002.
[53]
Joe Kniss, Simon Premoze, Charles Hansen, Peter Shirley, and Allen McPherson. A model for volume lighting and modeling. IEEE Transactions on Visualization and Computer Graphics, 9(2):150--162, 2003.
[54]
M. Kraus and T. Ertl. Adaptive texture maps. In Proceedings of Graphics Hardware 2002, pages 7--15, 2002.
[55]
J. Krüger and R. Westermann. Acceleration techniques for GPU-based volume rendering. In Proceedings IEEE Visualization 2003, 2003.
[56]
Eric C. LaMar, Bernd Hamann, and Kenneth I. Joy. Multiresolution techniques for interactive texture-based volume visualization. In Proceedings IEEE Visualization 1999, pages 355--362, 1999.
[57]
Eric C. LaMar, Bernd Hamann, and Kenneth I. Joy. Efficient error calculation for multiresolution texture-based volume visualization. In Gerald Farin, Bernd Hamann, and Hans Hagen, editors, Hierachical and Geometrical Methods in Scientific Visualization, pages 51--62. Springer-Verlag, Heidelberg, Germany, 2003.
[58]
Michael S. Langer and Heinrich H. Bülthoff. Depth discrimination from shading under diffuse lighting. Perception, 29(6):649--660, 2000.
[59]
H. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. Magnor, J. Lang, and H.-P. Seidel. Interactive rendering of translucent objects. Computer Graphics Forum, 22(2), 2003.
[60]
M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8(3):29--37, May 1988.
[61]
F. Link, M. Koenig, and H.-O. Peitgen. Multi-Resolution Volume Rendering with per Object Shading. In Proceedings of Vision, Modeling and Visualization, pages 185--191, 2006.
[62]
Yarden Livnat, Han-Wei Shen, and Christopher R. Johnson. A near optimal isosurface extraction algorithm using the span space. IEEE Transactions on Visualization and Computer Graphics, 2:73--84, 1996.
[63]
Patric Ljung. Adaptive sampling in single pass, GPU-based ray-casting of multiresolution volumes. In Proceedings Eurographics/IEEE Workshop on Volume Graphics 2006, pages 39--46, 134, 2006.
[64]
Patric Ljung. Efficient Methods for Direct Volume Rendering of Large Data Sets. PhD thesis, Linköping University, Sweden, 2006. Linköping studies in science and technology. Dissertations no. 1043.
[65]
Patric Ljung, Claes Lundström, and Anders Ynnerman. Multiresolution interblock interpolation in direct volume rendering. In Proceedings Eurographics/IEEE Symposium on Visualization 2006, pages 259--266, 2006.
[66]
Patric Ljung, Claes Lundström, Anders Ynnerman, and Ken Museth. Transfer function based adaptive decompression for volume rendering of large medical data sets. In Proceedings IEEE Volume Visualization and Graphics Symposium 2004, pages 25--32, 2004.
[67]
Patric Ljung, Calle Winskog, Anders Perssson, Claes Lundström, and Anders Ynnerman. Full body virtual autopsies using a state-of-the-art volume rendering pipeline. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization/Information Visualization 2006), 12:869--876, 2006.
[68]
Tom Lokovic and Eric Veach. Deep shadow maps. In SIGGRAPH '00: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pages 385--392, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.
[69]
Eric B. Lum, Kwan-Liu Ma, and John Clyne. Texture hardware assisted rendering of time-varying volume data. In Proceedings IEEE Visualization 2001, pages 263--270, 2001.
[70]
Eric B. Lum, Kwan-Liu Ma, and John Clyne. A hardware-assisted scalable solution for interactive volume rendering of time-varying data. IEEE Transactions on Visualization and Computer Graphics, 8:286--298, 2002.
[71]
Claes Lundström, Patric Ljung, and Anders Ynnerman. Local histograms for design of transfer functions in direct volume rendering. Transactions on Visualization and Computer Graphics, 12(6):1570--1579, Nov.-Dec. 2006.
[72]
Gerd Marmitt, Heiko Friedrich, and Philipp Slusallek. Interactive Volume Rendering with Ray Tracing. In Eurographics State of the Art Reports, 2006.
[73]
Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, 1(2):99--108, June 1995.
[74]
Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, 1(2):99--108, 1995.
[75]
Jörg Mensmann, Timo Ropinski, and Klaus Hinrichs. Accelerating Volume Raycasting using Occlusion Frustum. In IEEE/EG International Symposium on Volume and Point-Based Graphics, pages 147--154, 2008.
[76]
Ky Giang Nguyen and Dietmar Saupe. Rapid high quality compression of volume data for visualization. Computer Graphics Forum, 20(3), 2001.
[77]
Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan, Charles Hansen, and Peter Shirley. Interactive ray tracing for volume visualization. IEEE Transactions on Visualization and Computer Graphics, 5(3):238--250, 1999.
[78]
Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter-Pike Sloan. Interactive ray tracing for isosurface rendering. In Proceedings of IEEE Visualization '98. IEEE-CS, ACM, October 1998.
[79]
A. Patra and M. D. Wang. Volumetric medical image compression and reconstruction for interactive visualization in surgical planning. In Proceedings Data Compression Conference 2003, page 442, March 2003.
[80]
Eric Penner and Ross Mitchell. Isosurface Ambient Occlusion and Soft Shadows with Filterable Occlusion Maps. In IEEE/EG International Symposium on Volume and Point-Based Graphics, pages 57--64, 2008.
[81]
Matt Pharr and Greg Humphries. Physically Based Rendering. Morgan Kauffman, 2004.
[82]
William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased shadows with depth maps. In SIGGRAPH '87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pages 283--291. ACM Press, 1987.
[83]
S. Roettger, S. Guthe, D. Weiskopf, and T. Ertl. Smart hardware-accelerated volume rendering. In Procceedings of EG/IEEE TCVG Symposium on Visualization VisSym '03, pages 231--238, 2003.
[84]
Timo Ropinski, Jens Kasten, and Klaus H. Hinrichs. Efficient Shadows for GPU-based Volume Raycasting. In Proceedings of the 16th International Conference in Central Europe on Computer Graphics, Visualization (WSCG08), pages 17--24, 2008.
[85]
Timo Ropinski, Jennis Meyer-Spradow, Stefan Diepenbrock, Jörg Mensmann, and Klaus H. Hinrichs. Interactive Volume Rendering with Dynamic Ambient Occlusion and Color Bleeding. Computer Graphics Forum (Eurographics 2008), 27(2):567--576, 2008.
[86]
Stefan Röttger, Michael Bauer, and Marc Stamminger. Spatialized transfer functions. In Euro Vis, pages 271--278, 2005.
[87]
Marc Ruiz, Imma Boada, Ivan Viola, Stefan Bruckner, Miquel Feixas, and Mateu Sbert. Obscurance-based Volume Rendering Framework. In IEEE/EG International Symposium on Volume and Point-Based Graphics, pages 113--120, 2008.
[88]
C. Rezk Salama. GPU-Based Monte-Carlo Volume Raycasting. In Proc. Pacific Graphics, 2007.
[89]
Mirko Sattler, Ralf Sarlette, Thomas Mücken, and Reinhard Klein. Exploitation of human shadow perception for fast shadow rendering. In APGV '05: Proceedings of the 2nd symposium on Applied perception in graphics and visualization, pages 131--134. ACM Press, 2005.
[90]
H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, and K. Bühler. Perspective Isosurface and Direct Volume Rendering for Virtual Endoscopy Applications. In Proceedings of Eurovis '06, pages 315--323, 2006.
[91]
Henning Scharsach. Advanced GPU raycasting. In Proceedings of the 9th Central European Seminar on Computer Graphics, May 2005.
[92]
Jens Schneider and Rüdiger Westermann. Compression domain volume rendering. In Proceedings IEEE Visualization 2003, 2003.
[93]
Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. Clustered principal components for precomputed radiance transfer. In SIGGRAPH '03: ACM SIGGRAPH 2003 Papers, pages 382--391. ACM Press, 2003.
[94]
Peter-Pike Sloan, Ben Luna, and John Snyder. Local, deformable precomputed radiance transfer. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, pages 1216--1224. ACM Press, 2005.
[95]
Irwin Edward Sobel. Camera models and machine perception. PhD thesis, Stanford University, Stanford, CA, USA, 1970.
[96]
Lisa M. Sobierajski and Arie E. Kaufman. Volumetric ray tracing. In VVS '94: Proceedings of the 1994 symposium on Volume Visualization '94, pages 11--18. ACM Press, 1994.
[97]
S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible volume rendering framework for graphics-hardware--based raycasting. In Proceedings of the International Workshop on Volume Graphics '05, pages 187--195, 2005.
[98]
A. James Stewart. Vicinity shading for enhanced perception of volumetric data. In VIS '03: Proceedings of the 14th IEEE Visualization 2003 (VIS'03), page 47. IEEE Computer Society, 2003.
[99]
Wim Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets. Journal of Applied and Computational Harmonic Analysis, (3):186--200, 1996.
[100]
Martin Vetterli and Didier LeGall. Perfect reconstruction FIR filter banks: some properties and factorizations. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(7):1057--1071, July 1989.
[101]
Joachim E. Vollrath, Tobias Schafhitzel, and Thomas Ertl. Employing complex GPU data structures for the interactive visualization of adaptive mesh refinement data. In Proceedings Eurographics/IEEE Workshop on Volume Graphics 2006, pages 55--58, 136, 2006.
[102]
Ingo Wald, Heiko Friedrich, Gerd Marmitt, and Hans-Peter Seidel. Faster isosurface ray tracing using implicit kd-trees. IEEE Transactions on Visualization and Computer Graphics, 11(5):562--572, 2005. Member-Philipp Slusallek.
[103]
Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and Philipp Slusallek. Interactive global illumination using fast ray tracing. In EGRW '02: Proceedings of the 13th Eurographics workshop on Rendering, pages 15--24, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.
[104]
M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl. Level--Of--Detail Volume Rendering via 3D Textures. In Proceedings of IEEE Symposium on Volume Visualization, pages 7--13, 2000.
[105]
Manfred Weiler, Rüdiger Westermann, Chuck Hansen, Kurt Zimmerman, and Thomas Ertl. Level-of-detail volume rendering via 3d textures. In Proceedings IEEE Volume Visualization and Graphics Symposium 2000, pages 7--13. ACM Press, 2000.
[106]
Rüdiger Westermann. A multiresolution framework for volume rendering. In 1994 Symposium on Volume Visualization, October 1994.
[107]
G. Wetekam, D. Staneker, U. Kanus, and M. Wand. A hardware architecture for multi-resolution volume rendering. In Proceedings ACM SIGGRAPH/Eurographics Conference on Graphics Hardware, pages 45--51, New York, NY, USA, 2005. ACM Press.
[108]
Jane Wilhelms and Allen Van Gelder. Octrees for faster isosurface generation. ACM Transactions on Graphics, 11:201--227, 1992.
[109]
Lance Williams. Casting curved shadows on curved surfaces. In SIGGRAPH '78: Proceedings of the 5th annual conference on Computer graphics and interactive techniques, pages 270--274. ACM Press, 1978.
[110]
C. M. Wittenbrink, T. Malzbender, and M. E. Goss. Opacity-weighted color interpolation for volume sampling. In Proceedings of IEEE Symposium on Volume Visualization, pages 135--142, 1998.
[111]
Chris Wyman, Steven Parker, Charles Hansen, and Peter Shirley. Interactive display of isosurfaces with global illumination. IEEE Transactions on Visualization and Computer Graphics, 12(2):186--196, 2006.
[112]
Boon-Lock Yeo and Bede Liu. Volume rendering of DCT-based compressed 3d scalar data. IEEE Transactions on Visualization and Computer Graphics, 1:29--43, March 1995.
[113]
C. Zhang, D. Xue, and R. Crawfis. Light propagation for mixed polygonal and volumetric data. In CGI '05: Proceedings of the Computer Graphics International 2005, pages 249--256, Washington, DC, USA, 2005. IEEE Computer Society.
[114]
Caixia Zhang and Roger Crawfis. Shadows and soft shadows with participating media using splatting. IEEE Transactions on Visualization and Computer Graphics, 9(2):139--149, 2003.

Cited By

View all
  • (2024)Depth-Box VDB: Accelerate Sparse Volume Rendering with Depth Maps through Voxel Database2024 IEEE 17th Pacific Visualization Conference (PacificVis)10.1109/PacificVis60374.2024.00037(272-276)Online publication date: 23-Apr-2024
  • (2022)Real-Time Denoising of Volumetric Path Tracing for Direct Volume RenderingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.303768028:7(2734-2747)Online publication date: 1-Jul-2022
  • (2021)Evaluating surface visualization methods in semi-transparent volume rendering in virtual realityComputer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization10.1080/21681163.2020.18355459:4(339-348)Online publication date: 15-Apr-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH Asia '08: ACM SIGGRAPH ASIA 2008 courses
December 2008
2261 pages
ISBN:9781450379243
DOI:10.1145/1508044
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 December 2008

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

SA08
Sponsor:
SA08: SIGGRAPH ASIA 2008
December 10 - 13, 2008
Singapore

Acceptance Rates

Overall Acceptance Rate 178 of 869 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)43
  • Downloads (Last 6 weeks)4
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Depth-Box VDB: Accelerate Sparse Volume Rendering with Depth Maps through Voxel Database2024 IEEE 17th Pacific Visualization Conference (PacificVis)10.1109/PacificVis60374.2024.00037(272-276)Online publication date: 23-Apr-2024
  • (2022)Real-Time Denoising of Volumetric Path Tracing for Direct Volume RenderingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.303768028:7(2734-2747)Online publication date: 1-Jul-2022
  • (2021)Evaluating surface visualization methods in semi-transparent volume rendering in virtual realityComputer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization10.1080/21681163.2020.18355459:4(339-348)Online publication date: 15-Apr-2021
  • (2020)A CT-guided robotic needle puncture method for lung tumours with respiratory motionPhysica Medica10.1016/j.ejmp.2020.04.00373(48-56)Online publication date: May-2020
  • (2019)Volume-based large dynamic graph analysis supported by evolution provenanceMultimedia Tools and Applications10.1007/s11042-019-07878-678:23(32939-32965)Online publication date: 29-Jun-2019
  • (2018)A Virtual Reality Visualization Tool for Neuron TracingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2017.274407924:1(994-1003)Online publication date: Jan-2018
  • (2016)MCFTLEComputer Graphics Forum10.5555/3071534.307157535:3(381-390)Online publication date: 1-Jun-2016
  • (2016)Real-time novel-view synthesis for volume rendering using a piecewise-analytic representationProceedings of the Conference on Vision, Modeling and Visualization10.5555/3056901.3056916(85-92)Online publication date: 10-Oct-2016
  • (2016)Adaptive sampling for on-the-fly ray casting of particle-based fluidsProceedings of High Performance Graphics10.5555/2977336.2977353(129-138)Online publication date: 20-Jun-2016
  • (2016)MCFTLE: Monte Carlo Rendering of Finite‐Time Lyapunov Exponent FieldsComputer Graphics Forum10.1111/cgf.1291435:3(381-390)Online publication date: 4-Jul-2016
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media