skip to main content
10.1145/1514274.1514276acmconferencesArticle/Chapter ViewAbstractPublication PageswisecConference Proceedingsconference-collections
research-article

On the application of pairing based cryptography to wireless sensor networks

Published: 16 March 2009 Publication History

Abstract

Recent research results have shown that Elliptic Curve Cryptography (ECC) is feasible on resource constrained sensor nodes. In this work we demonstrate that the related but more complex primitives of Pairing Based Cryptography(PBC) are also well suited for sensor devices.
We present the first in-depth study on the application and implementation of PBC to Wireless Sensor Networks (WSNs). Our implementations are all the fastest yet reported, and have been implemented across a range of WSN processors. On a system level we investigate the application of a simple non-interactive key exchange scheme that is particularly suitable for many WSN scenarios. We also present a novel variant of the key exchange protocol which can be useful in even more demanding applications, and which partially solves the problem of node compromise attacks.

References

[1]
Atmel. ATmega128L datasheet, 2006. http://www.atmel.com.
[2]
P. S. L. M. Barreto, S. Galbraith, C. O'hEigeartaigh, and M. Scott. Efficient pairing computation on supersingular abelian varieties. Designs, Codes and Cryptography, 42:239--271, 2007.
[3]
P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryptosystems. Advances in Cryptology -- Crypto'2002, volume 2442 of Lecture Notes in Computer Science, pages 354--368. Springer-Verlag, 2002.
[4]
E.-O. Blaß and M. Zitterbart. Towards Acceptable Public-Key Encryption in Sensor Networks. The 2nd Int'l Workshop on Ubiquitous Computing. ACMSIGMIS, May 2005.
[5]
M. Bodrato. Towards optimal Toom-Cook multiplication for univariate and multivariate polynomials in characteristic 2 and 0. C. Carlet and B. Sunar, editors, WAIFI 2007 proceedings, volume 4547 of LNCS, pages 116--133. Springer, June 2007. http://bodrato.it/papers/\#WAIFI2007.
[6]
S. Chatterjee, P. Sarkar, and R. Barua. Efficient computation of tate pairing in projective coordinate over general characteristic fields. Information Security and Cryptology ---- ICISC 2004, volume 3506 of Lecture Notes in Computer Science, pages 168--181, 2005.
[7]
B. Doyle, S. Bell, A. F. Smeaton, K. McCusker, and N. O'Connor. Security considerations and key negotiation techniques for power constrained sensor networks. The Computer Journal (Oxford University Press), 49(4):443--453, 2006.
[8]
R. Dupont and A. Enge. Provably secure non-interactive key distribution based on pairings. Discrete Appl. Math., 154(2):270--276, 2006.
[9]
K. Fong, D. Hankerson, J. Lopez, and A. Menezes. Field inversion and point halving revisited. IEEE Transactions on Computers, 53(8):1047--1059, 2004.
[10]
D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves. Cryptology ePrint Archive, Report 2006/372, 2006. http://eprint.iacr.org/2006/372.
[11]
S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. Algorithm Number Theory Symposium -- ANTS V, volume 2369 of Lecture Notes in Computer Science, pages 324--337. Springer-Verlag, 2002.
[12]
S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Cryptology ePrint Archive, Report 2006/165, 2006. http://eprint.iacr.org/2006/165.
[13]
S. Galbraith and V. Rotger. Easy decision diffie-hellman groups. LMS Journal of Computation and Mathematics, 7:201--218, 2004.
[14]
N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs. Workshop on Cryptographic Hardware and Embedded Systems (CHES'04), pages 119--132, 2004.
[15]
D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Springer, 2004.
[16]
W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication protocol for wireless microsensor networks. HICSS, 2000.
[17]
F. Hess, N. Smart, and F. Vercauteren. The Eta pairing revisited. IEEE Transactions on Information Theory, 52(10), 2006. http://eprint.iacr.org/2006/110.
[18]
Intel-Corporation. Intel Xscale Microarchitecture Datasheet, 2000. http://www.intel.com.
[19]
A. Joux and R. Lercier. Discrete logarithms in GF(2^607) and GF(2^613), 2005. http://perso.univ-rennes1.fr/reynald.lercier/file/nmbrJL05a.html.
[20]
C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link layer security architecture for Wireless Sensor Networks. 2nd ACM SensSys, pages 162--175, Nov 2004.
[21]
M. Keller, T. Kerins, and W. P. Marnane. FPGA implementation of a GF(2^(4M)) multiplier for use in pairing based cryptosystems. T. Rissa, S. J. E. Wilton, and P. H. W. Leong, editors, FPL, pages 594--597. IEEE, 2005.
[22]
T. Kleinjung. Discrete logarithms in GF(p) -- 160 digits, 2007. http://www.nabble.com/Discrete-logarithms-in-GF(p)-160-digits-td%8810595.html.
[23]
D. E. Knuth. The art of computer programming, volume 2. Addison-Wesley Longman Publishing Co., Inc., 1997.
[24]
A. K. Lenstra. Unbelievable security. Matching AES security using public key systems. Advances in Cryptology -- Asiacrypt 2001}, volume 2248, pages 67--86. Springer-Verlag, 2001.
[25]
S. Lindsey and C. S. Raghavendra. Pegasis: Power-efficient gathering in sensor information systems, 2002.
[26]
A. Liu, P. Kampanakis, and P. Ning. Tinyecc: Elliptic Curve Cryptography for sensor network (ver.1.0), February 2007. http://discovery.csc.ncsu.edu/software/TinyECC/.
[27]
D. J. Malan, M. Welsh, and M. D. Smith. A Public-Key Infrastructure for key distribution in TinyOS based on Elliptic Curve Cryptography. 1st IEEE Intl' Conf. on Sensor and Ad Hoc Communications and Networks (SECON'04), 2004.
[28]
K. McCusker, N. O'Connor, and D. Diamond. Low-energy finite field arithmetic primitives for implementing security in Wireless Sensor Networks. 2006 Intl' Conf. on Communications, CircuiTS aND sYstems, volume III -- Computer, Optical and Broadband; Communications; Computational Intelligence, pages 1537--1541, 2006.
[29]
A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, 1993.
[30]
A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve traces for FR-reduction. IEICE Transactions on Fundamentals}, E84-A(5):1234--1243, 2001.
[31]
P. Montgomery. Modular multiplication without division. Mathematics of Computation, 44(170):519--521, 1985.
[32]
L. B. Oliveira, R. Dahab, J. Lopez, F. Daguano, and A. A. F. Loureiro. Identity-based encryption for sensor networks. 5th IEEE International Conference on Pervasive Computing and Communications Workshops PERCOMW '07, pages 290--294, 2007.
[33]
L. B. Oliveira, M. Scott, J. Lopez, and R. Dahab. TinyPBC: Pairings for authenticated identity-based non-interactive key distribution in sensor networks. Cryptology ePrint Archive, Report 2007/482, 2007. http://eprint.iacr.org/.
[34]
L. Oliviera, D. Aranha, E. Morais, F. Daguano, J. Lopez, and R. Dahab. Tinytate: Computing the tate pairing in resource-constrained sensor nodes. 6th IEEE Inernational Symposium on Network Computing and Applications -- NCA 2007, 2007.
[35]
A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. SPINS: Security protocols for sensor networks. Wireless Networks, 8(5):521--534, Sept. 2002. Also appeared in MobiCom'01.
[36]
R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. The 2000 Symposium on Cryptography and Information Security, Okinawa, Japan, 2000.
[37]
M. Scott. Computing the Tate pairing. CT-RSA, volume 3376 of Lecture Notes in Computer Science, pages 293--304. Springer-Verlag, 2005.
[38]
M. Scott. Implementing cryptographic pairings. Pairing 2007, volume 4575 of Lecture Notes in Computer Science, pages 177--196. Springer-Verlag, 2007.
[39]
M. Scott. MIRACL -- Multiprecision Integer and Rational Arithmetic C/C++ Library, 2007. http://ftp.computing.dcu.ie/pub/crypto/miracl.zip.
[40]
M. Scott. Optimal Irreducible Polynomials for GF(2<sup>m</sup>). Cryptology ePrint Archive, Report 2007/192, 2007. http://eprint.iacr.org.
[41]
M. Scott and P. Szczechowiak. Optimizing multiprecision multiplication for public key cryptography. Cryptology ePrint Archive, Report 2007/299, 2007. http://eprint.iacr.org/2007/299.
[42]
D. Seal. ARM Architecture Reference Manual. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.
[43]
S. C. Seo, D.-G. Han, and S. Hong. TinyECCK: Efficient Elliptic Curve Cryptography implementation over GF(2<sup>m</sup>) on 8-bit MICAz mote. Cryptology ePrint Archive, Report 2008/122, 2008. http://eprint.iacr.org/.
[44]
P. Szczechowiak, L. Oliviera, M. Scott, M. Collier, and R. Dahab. NanoECC: Testing the limits of Elliptic Curve Cryptography in Sensor Networks. Wireless Sensor Networks -- EWSN 2008, volume 4913 of Lecture Notes in Computer Science, pages 305--320. Springer-Verlag, 2008.
[45]
Texas-Instruments. MSP430 Datasheet, 2002. http://www.ti.com.
[46]
H. Wang, B. Sheng, and Q. Li. Elliptic Curve Cryptography based access control in sensor networks. International Journal of Security and Networks (IJSN). Special Issue on Security Issues on Sensor Networks, 1(3/4):127--137, 2006.
[47]
R. J. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, and P. Kruus. Tinypk: securing sensor networks with public key technology. 2nd ACM Workshop on Security of ad hoc and Sensor Networks SASN'04, pages 59--64, Washington, DC, October 2004.
[48]
S. Zhu, S. Setia, and S. Jajodia. LEAP: efficient security mechanisms for large-scale distributed sensor networks. 10th ACM conference on Computer and communication security CCS'03, pages 62--72. ACM Press, 2003.

Cited By

View all
  • (2021)A Secure and Lightweight Protocol for Message Authentication in Wireless Sensor NetworksIEEE Systems Journal10.1109/JSYST.2020.301542415:3(3808-3819)Online publication date: Sep-2021
  • (2021)Practical Identity Based Online/Off-Line Signcryption Scheme for Secure Communication in Internet of ThingsIEEE Access10.1109/ACCESS.2021.30551489(21267-21278)Online publication date: 2021
  • (2020)iTLS: Lightweight Transport-Layer Security Protocol for IoT With Minimal Latency and Perfect Forward SecrecyIEEE Internet of Things Journal10.1109/JIOT.2020.29881267:8(6828-6841)Online publication date: Aug-2020
  • Show More Cited By

Index Terms

  1. On the application of pairing based cryptography to wireless sensor networks

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      WiSec '09: Proceedings of the second ACM conference on Wireless network security
      March 2009
      280 pages
      ISBN:9781605584607
      DOI:10.1145/1514274
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 16 March 2009

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. implementation
      2. pairing-based cryptography
      3. security protocols
      4. wireless sensor networks

      Qualifiers

      • Research-article

      Conference

      WISEC '09
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 98 of 338 submissions, 29%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)20
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 07 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2021)A Secure and Lightweight Protocol for Message Authentication in Wireless Sensor NetworksIEEE Systems Journal10.1109/JSYST.2020.301542415:3(3808-3819)Online publication date: Sep-2021
      • (2021)Practical Identity Based Online/Off-Line Signcryption Scheme for Secure Communication in Internet of ThingsIEEE Access10.1109/ACCESS.2021.30551489(21267-21278)Online publication date: 2021
      • (2020)iTLS: Lightweight Transport-Layer Security Protocol for IoT With Minimal Latency and Perfect Forward SecrecyIEEE Internet of Things Journal10.1109/JIOT.2020.29881267:8(6828-6841)Online publication date: Aug-2020
      • (2019)Cryptography in WSNsMission-Oriented Sensor Networks and Systems: Art and Science10.1007/978-3-319-91146-5_21(783-820)Online publication date: 19-Sep-2019
      • (2019)Additively Homomorphic IBE from Higher ResiduosityPublic-Key Cryptography – PKC 201910.1007/978-3-030-17253-4_17(496-515)Online publication date: 6-Apr-2019
      • (2018)An efficient implementation of pairing-based cryptography on MSP430 processorThe Journal of Supercomputing10.1007/s11227-017-2097-474:3(1394-1417)Online publication date: 1-Mar-2018
      • (2018)Pairing-Based Cryptography on the Internet of Things: A Feasibility StudyWired/Wireless Internet Communications10.1007/978-3-030-02931-9_18(219-230)Online publication date: 29-Dec-2018
      • (2017)SIoT: Securing Internet of Things through distributed systems analysisFuture Generation Computer Systems10.1016/j.future.2017.08.010Online publication date: Aug-2017
      • (2016)AoTProceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM10.1145/2994551.2994555(1-15)Online publication date: 14-Nov-2016
      • (2016)A Survey of Public-Key Cryptographic Primitives in Wireless Sensor NetworksIEEE Communications Surveys & Tutorials10.1109/COMST.2015.245969118:1(577-601)Online publication date: Sep-2017
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media