skip to main content
10.1145/1516360.1516417acmotherconferencesArticle/Chapter ViewAbstractPublication PagesedbtConference Proceedingsconference-collections
research-article
Free Access

On-line exact shortest distance query processing

Published:24 March 2009Publication History

ABSTRACT

Shortest-path query processing not only serves as a long established routine for numerous applications in the past but also is of increasing popularity to support novel graph applications in very large databases nowadays. For a large graph, there is the new scenario to query intensively against arbitrary nodes, asking to quickly return node distance or even shortest paths. And traditional main memory algorithms and shortest paths materialization become inadequate. We are interested in graph labelings to encode the underlying graphs and assign labels to nodes to support efficient query processing. Surprisingly, the existing work of this category mainly emphasizes on reachability query processing, while no sufficient effort has been given to distance labelings to support querying exact shortest distances between nodes. Distance labelings must be developed on the graph in whole to correctly retain node distance information. It makes many existing methods to be inapplicable. We focus on fast computing distance-aware 2-hop covers, which can encode the all-pairs shortest paths of a graph in O(|V|·|E|1/2) space. Our approach exploits strongly connected components collapsing and graph partitioning to gain speed, while it can overcome the challenges in correctly retaining node distance information and appropriately encoding all-pairs shortest paths with small overhead. Furthermore, our approach avoids pre-computing all-pairs shortest paths, which can be prohibitive over large graphs. We conducted extensive performance studies, and confirm the efficiency of our proposed new approaches.

References

  1. R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transitive relationships in large data and knowledge bases. In Proc. of SIGMOD'89, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Agrawal and H. V. Jagadish. Algorithms for searching massive graphs. IEEE Trans. on Knowl. and Data Eng., 06(2), 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large social networks: membership, growth, and evolution. In Proc. of KDD '06, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87--90, 1958.Google ScholarGoogle ScholarCross RefCross Ref
  5. R. Bramandia, B. Choi, and W. K. Ng. On incremental maintenance of 2-hop labeling of graphs. In Proc. of WWW '08, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms for pattern matching on dags. In Proc. of VLDB'05, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computation of reachability labeling for large graphs. In Proc. of EDBT'06, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computing reachability labelings for large graphs with high compression rate. In Proc. of EDBT '08, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance queries via 2-hop labels. In Proc. of SODA'02, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT Press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Predicting internet network distance with coordinates-based approaches. In Proc. of SIGCOMM '04, 2004.Google ScholarGoogle Scholar
  12. E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Math., 1:269--271, 1959.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. W. Floyd. Shortest path. Communications of the ACM, 5:345, 1962. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. J. Algorithms, 53(1):85--112, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. V. Goldberg and R. F. Werneck. Computing point-to-point shortest paths from external memory. In Proc. of ALENEX '05, 2005.Google ScholarGoogle Scholar
  16. A. V. Goldberg and R. F. Werneck. Reach for a*: Efficient point-to-point shortest path algorithms. In Proc. of ALENEX '06, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  17. G. Gou and R. Chirkova. Efficient algorithms for exact ranked twig-pattern matching over graphs. In Proc. of SIGMOD '08, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword searches on graphs. In Proc. of SIGMOD '07, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. H. V. Jagadish. A compression technique to materialize transitive closure. ACM Trans. Database Syst., 15(4):558--598, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently answering reachability queries on very large directed graphs. In Proc. of SIGMOD '08, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. N. Jing, Y.-W. Huang, and E. A. Rundensteiner. Hierarchical encoded path views for path query processing: An optimal model and its performance evaluation. IEEE Trans. on Knowl. and Data Eng., 10(3), 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. B. Johnson. Finding all the elementary circuits of a directed graph. SIAM J. Comput., 4(1):77--84, 1975.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. S. Johnson. Approximation algorithms for combinatorial problems. In Proc. of STOC'73, 1973. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. Johnsonbaugh and M. Kalin. A graph generation software package. In Prof. of SIGCSE'91, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Jung and S. Pramanik. An efficient path computation model for hierarchically structured topographical road maps. IEEE Trans. on Knowl. and Data Eng., 14(5), 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. Kempe, J. Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network. In Proc. of KDD '03, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. I. M. Keseler, J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, I. T. Paulsen, M. Peralta-Gil, and P. D. Karp. Ecocyc: a comprehensive database resource for escherichia coli. Nucleic Acids Research, 33(D334-7), 2005.Google ScholarGoogle Scholar
  28. D. E. Knuth. The Stanford GraphBase: a platform for combinatorial computing. ACM Press, 1993. Google ScholarGoogle Scholar
  29. T. S. E. Ng and H. Zhang. Predicting internet network distance with coordiantes-based approaches. In Proc. of INFOCOM '01, 2001.Google ScholarGoogle Scholar
  30. D. Peleg. Proximity-preserving labeling schemes. J. Graph Theory, 33:167--176, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Pettie. On the shortest path and minimum spanning tree problems. PH.D Dissertation, The University of Texas at Austin, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. A. Rahman, P. Advani, R. Schunk, R. Schrader, and D. Schomburg. Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC). Bioinformatics, 21(7):1189--1193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. R. Schenkel, A. Theobald, and G. Weikum. Hopi: An efficient connection index for complex XML document collections. In Proc. of EDBT'04, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  34. R. Schenkel, A. Theobald, and G. Weikum. Efficient creation and incremental maintenance of the HOPI index for complex XML document collections. In Proc. of ICDE'05, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and R. Busse. Xmark: A benchmark for xml data management. In Proc. of VLDB'02, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. E. Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM J. Comput., 2(3):211--216, 1973.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Thorup and U. Zwick. Approximate distance oracles. In Proc. of STOC '01, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. TrißI and U. Leser. Fast and practical indexing and querying of very large graphs. In Proc. of SIGMOD '07, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual labeling: Answering graph reachability queries in constant time. In Proc. of ICDE'06, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. Wasserman and K. Faust. Social Network Analysis. Cambridge University Press, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  41. R. Yuster and U. Zwick. Answering distance queries in directed graphs using fast matrix multiplication. In Proc. of FOCS '05, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM, 49(3):289--317, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    EDBT '09: Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology
    March 2009
    1180 pages
    ISBN:9781605584225
    DOI:10.1145/1516360

    Copyright © 2009 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 24 March 2009

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate7of10submissions,70%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader