skip to main content
research-article

NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes

Published: 27 July 2009 Publication History

Abstract

We present a subdivision framework that adds extraordinary vertices to NURBS of arbitrarily high degree. The surfaces can represent any odd degree NURBS patch exactly. Our rules handle non-uniform knot vectors, and are not restricted to midpoint knot insertion. In the absence of multiple knots at extraordinary points, the limit surfaces have bounded curvature.

Supplementary Material

JPG File (tps085_09.jpg)
Zip (46-032.zip)
This archive contains material supporting our paper "NURBS with Extraordinary Points: High-degree, Non-uniform, Rational Subdivision Schemes".
MP4 File (tps085_09.mp4)

References

[1]
Augsdörfer, U. H., Dodgson, N. A., and Sabin, M. A. 2006. Tuning Subdivision by Minimising Gaussian Curvature Variation Near Extraordinary Vertices. Comp. Graph. Forum 25, 3, 263--272.
[2]
Augsdörfer, U. H., Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009. Numerical Checking of C1 for Arbitrary Degree Quadrilateral Subdivision Schemes. In 13th IMA Conference on the Mathematics of Surfaces, Springer. To appear.
[3]
Barthe, L., and Kobbelt, L. 2004. Subdivision scheme tuning around extraordinary vertices. CAGD 21, 6, 561--583.
[4]
Boehm, W. 1980. Inserting new knots into B-spline curves. Computer-Aided Design 12, 4, 199--201.
[5]
Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009. Selective knot insertion for symmetric, non-uniform refine and smooth B-spline subdivision. CAGD 26, 4, 472--479.
[6]
Catmull, E., and Clark, J. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6, 350--355.
[7]
Cohen, E., Lyche, T., and Riesenfeld, R. 1980. Discrete B-splines and Subdivision Techniques in Computer-Aided Geometric Design and Computer Graphics. Computer Graphics and Image Processing 14, 2, 87--111.
[8]
DeRose, T., Kass, M., and Truong, T. 1998. Subdivision surfaces in character animation. In Proc. SIGGRAPH 98, 85--94.
[9]
Farin, G. 2001. Curves and Surfaces for CAGD: A Practical Guide, 5th ed. Morgan Kaufmann.
[10]
Galil, Z., and Italiano, G. 1991. Data structures and algorithms for disjoint set union problems. ACM Computing Surveys 23, 3, 319--344.
[11]
Ginkel, I., and Umlauf, G. 2006. Loop subdivision with curvature control. In Eurographics Symposium on Geom. Proc., Eurographics, K. Polthier and A. Sheffer, Eds., 163--171.
[12]
Gonsor, D., and Neamtu, M. 2001. Subdivision Surfaces -- Can they be Useful for Geometric Modeling Applications? Tech. Rep. 01--011, The Boeing Company.
[13]
Holt, F. 1996. Toward a curvature-continuous stationary subdivision algorithm. Zeitschrift für angewandte Mathematik und Mechanik 76, 423--424.
[14]
Karciauskas, K., Peters, J., and Reif, U. 2004. Shape characterization of subdivision surfaces-case studies. CAGD 21, 6, 601--614.
[15]
Lane, J. M., and Riesenfeld, R. F. 1980. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces. IEEE Trans. PAMI 2, 1, 35--46.
[16]
Levin, A. 2006. Modified subdivision surfaces with continuous curvature. ACM Trans. Graph. 25, 3, 1035--1040.
[17]
Loop, C. 2002. Bounded curvature triangle mesh subdivision with the convex hull property. The Visual Computer 18, 316--325.
[18]
Ma, W. 2005. Subdivision surfaces for CAD---an overview. Computer-Aided Design 37, 7, 693--709.
[19]
Müller, K., Reusche, L., and Fellner, D. 2006. Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces. ACM Trans. Graph. 25, 2, 268--292.
[20]
Peters, J., and Reif, U. 2008. Subdivision Surfaces. Springer.
[21]
Prautzsch, H. 1997. Freeform splines. CAGD 14, 3, 201--206.
[22]
Prautzsch, H. 1998. Smoothness of subdivision surfaces at extraordinary points. Adv. in Comp. Math. 9, 3, 377--389.
[23]
Ramshaw, L. 1989. Blossoms are polar forms. CAGD 6, 4, 323--358.
[24]
Reif, U. 1996. A Degree Estimate for Subdivision Surfaces of Higher Regularity. Proc. Amer. Math. Soc. 124, 7, 2167--2174.
[25]
Reif, U. 1998. TURBS---Topologically Unrestricted Rational B-Splines. Constructive Approximation 14, 1, 57--77.
[26]
Sabin, M. A., Dodgson, N. A., Hassan, M. F., and Ivrissimtzis, I. P. 2003. Curvature behaviours at extraordinary points of subdivision surfaces. Computer-Aided Design 35, 11, 1047--1051.
[27]
Sabin, M. 1991. Cubic recursive division with bounded curvature. In Curves and surfaces, Academic Press, 411--414.
[28]
Schaefer, S., and Goldman, R. 2009. Non-uniform Subdivision for B-splines of Arbitrary Degree. CAGD 26, 1, 75--81.
[29]
Sederberg, T. W., Zheng, J., Sewell, D., and Sabin, M. 1998. Non-Uniform Recursive Subdivision Surfaces. In Proc. SIGGRAPH 98, 387--394.
[30]
Sederberg, T. W., Zheng, J., Bakenov, A., and Nasri, A. 2003. T-splines and T-NURCCs. ACM Trans. Graph. 22, 3, 477--484.
[31]
Stam, J. 1998. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In Proc. SIGGRAPH 98, 395--404.
[32]
Stam, J. 2001. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree. CAGD 18, 5, 383--396.
[33]
Warren, J., and Weimer, H. 2001. Subdivision Methods for Geometric Design. Morgan Kaufmann.
[34]
Zorin, D., and Schröder, P. 2001. A unified framework for primal/dual quadrilateral subdivision schemes. CAGD 18, 5, 429--454.

Cited By

View all

Index Terms

  1. NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 28, Issue 3
      August 2009
      750 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1531326
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 27 July 2009
      Published in TOG Volume 28, Issue 3

      Permissions

      Request permissions for this article.

      Check for updates

      Qualifiers

      • Research-article

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)11
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 20 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)Higher-degrees Hybrid Non-uniform Subdivision SurfacesComputer-Aided Design10.1016/j.cad.2024.103822179(103822)Online publication date: Feb-2025
      • (2024)Inverse Geometric Reconstruction Based on MW-NURBS CurvesMathematics10.3390/math1213207112:13(2071)Online publication date: 2-Jul-2024
      • (2024)A class of new tuned primal subdivision schemes with high-quality limit surface in extraordinary regionsACM Transactions on Graphics10.1145/368798743:6(1-17)Online publication date: 19-Dec-2024
      • (2024)Patching Non-Uniform Extraordinary PointsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.327166930:8(4683-4693)Online publication date: Aug-2024
      • (2024)From CAD to representations suitable for isogeometric analysis: a complete pipelineEngineering with Computers10.1007/s00366-024-02065-040:6(3429-3447)Online publication date: 1-Dec-2024
      • (2023)An Unified λ-subdivision Scheme for Quadrilateral Meshes with Optimal Curvature Performance in Extraordinary RegionsACM Transactions on Graphics10.1145/361840042:6(1-15)Online publication date: 5-Dec-2023
      • (2023)Evolving Guide SubdivisionComputer Graphics Forum10.1111/cgf.1476442:2(321-332)Online publication date: 23-May-2023
      • (2023)Point-normal subdivision curves and surfacesComputer Aided Geometric Design10.1016/j.cagd.2023.102207104(102207)Online publication date: Jul-2023
      • (2023)Bivariate non-uniform subdivision schemes based on L-systemsApplied Mathematics and Computation10.1016/j.amc.2023.128156457(128156)Online publication date: Nov-2023
      • (2023)Deep Learning in Mechanical Metamaterials: From Prediction and Generation to Inverse DesignAdvanced Materials10.1002/adma.20230253035:45Online publication date: 29-Sep-2023
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media