skip to main content
research-article

Capture and modeling of non-linear heterogeneous soft tissue

Published: 27 July 2009 Publication History

Abstract

This paper introduces a data-driven representation and modeling technique for simulating non-linear heterogeneous soft tissue. It simplifies the construction of convincing deformable models by avoiding complex selection and tuning of physical material parameters, yet retaining the richness of non-linear heterogeneous behavior. We acquire a set of example deformations of a real object, and represent each of them as a spatially varying stress-strain relationship in a finite-element model. We then model the material by non-linear interpolation of these stress-strain relationships in strain-space. Our method relies on a simple-to-build capture system and an efficient run-time simulation algorithm based on incremental loading, making it suitable for interactive computer graphics applications. We present the results of our approach for several non-linear materials and biological soft tissue, with accurate agreement of our model to the measured data.

Supplementary Material

JPG File (tps064_09.jpg)
Zip (89-523.zip)
Supplemental material content: "Capture and Modeling of NonLinear Heterogeneous Soft Tissue.mov" Quicktime H.264 codec, no audio
MP4 File (tps064_09.mp4)

References

[1]
Allen, B., Curless, B., and Popović, Z. 2002. Articulated body deformation from range scan data. ACM Trans. Graph. 21, 3, 612--619.
[2]
Bathe, K.-J. 1995. Finite Element Procedures. Prentice-Hall.
[3]
Becker, M., and Teschner, M. 2007. Robust and efficient estimation of elasticity parameters using the linear finite element method. In SimVis, 15--28.
[4]
Bergeron, P., and Lachapelle, P., 1985. Controlling facial expression and body movements in the computer generated short "Tony de Peltrie". Siggraph Course Notes.
[5]
Bickel, B., Lang, M., Botsch, M., Otaduy, M. A., and Gross, M. 2008. Pose-space animation and transfer of facial details. In Proc. of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 57--66.
[6]
Blanz, V., Basso, C., Poggio, T., and Vetter, T. 2003. Re-animating faces in images and video. Computer Graphics Forum 22, 3 (Sept.), 641--650.
[7]
Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics (TVCG) 14, 1, 213--230.
[8]
Buehler, C., Bosse, M., McMillan, L., Gortler, S., and Cohen, M. 2001. Unstructured lumigraph rendering. In Proc. of ACM SIGGRAPH, ACM, 425--432.
[9]
Burion, S., Conti, F., Petrovskaya, A., Baur, C., and Khatib, O. 2008. Identifying physical properties of deformable objects by using particle filters. In Proc. of the International Conference on Robotics and Automation, 1112--1117.
[10]
Capell, S., Burkhart, M., Curless, B., Duchamp, T., and Popović, Z. 2005. Physically based rigging for deformable characters. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 301--310.
[11]
Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R. 2001. Reconstruction and representation of 3D objects with radial basis functions. In Proc. of ACM SIGGRAPH, 67--76.
[12]
DiLorenzo, P., Zordan, V., and Sanders, B. 2008. Laughing Out Loud: Control for modeling anatomically inspired laughter using audio. ACM Trans. Graph. (Proc. of ACM SIGGRAPH Asia) 27, 5.
[13]
Galoppo, N., Otaduy, M. A., Moss, W., Sewall, J., Curtis, S., and Lin, M. C. 2009. Controlling deformable material with dynamic morph targets. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games.
[14]
Hart, E. W. 1967. Theory of the tensile test. Acta Metallurgica 15, 351--355.
[15]
Hughes, T. J. R. 2000. The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Dover Publications.
[16]
James, D. L., and Pai, D. K. 1999. ArtDefo: Accurate real time deformable objects. In Proc. of ACM SIGGRAPH, ACM Press/Addison-Wesley Publishing Co., 65--72.
[17]
Kajberg, J., and Lindkvist, G. 2004. Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields. International Journal of Solids and Structures 41, 13, 3439--3459.
[18]
Kauer, M., Vuskovic, V., Dual, J., Szekely, G., and Bajka, M. 2002. Inverse finite element characterization of soft tissues. Medical Image Analysis 6, 3, 257--287.
[19]
Kaufmann, P., Martin, S., Botsch, M., and Gross, M. 2008. Flexible simulation of deformable models using discontinuous galerkin fem. Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 105--115.
[20]
Kim, T.-Y., and Vendrovsky, E. 2008. Drivenshape - a data-driven approach to shape deformation. In Proc. of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation.
[21]
Koch, R. M., Gross, M. H., Carls, F. R., von Büren, D. F., Fankhauser, G., and Parish, Y. 1996. Simulating facial surgery using finite element methods. In Proc. of ACM SIGGRAPH, 421--428.
[22]
Kry, P. G., and Pai, D. K. 2006. Interaction capture and synthesis. ACM Trans. Graph. (Proc. of ACM SIGGRAPH) 25, 3, 872--880.
[23]
Lang, J., Pai, D. K., and Woodham, R. J. 2002. Acquisition of elastic models for interactive simulation. International Journal of Robotics Research 21, 8, 713--733.
[24]
Lee, S.-H., and Terzopoulos, D. 2006. Heads up!: Biomechanical modeling and neuromuscular control of the neck. ACM Trans. Graph. (Proc. of ACM SIGGRAPH) 25, 3.
[25]
Levenberg, K. 1944. A method for the solution of certain non-linear problems in least squares. The Quarterly of Applied Mathematics, 2, 164--168.
[26]
Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In Proc. of ACM SIGGRAPH, 165--172.
[27]
Ma, W.-C., Jones, A., Chiang, J.-Y., Hawkins, T., Frederiksen, S., Peers, P., Vukovic, M., Ouhyoung, M., and Debevec, P. 2008. Facial performance synthesis using deformation-driven polynomial displacement maps. ACM Trans. Graph. (Proc. of ACM SIGGRAPH Asia) 27, 5.
[28]
Magnenat-Thalmann, N., Kalra, P., Lévêque, J. L., Bazin, R., Batisse, D., and Queleux, B. 2002. A computational skin model: fold and wrinkle formation. IEEE Trans. on Information Technology in Biomedicine 6, 4, 317--323.
[29]
Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH) 22, 3, 759--770.
[30]
Müller, M., and Gross, M. 2004. Interactive virtual materials. In GI '04: Proceedings of Graphics Interface 2004, Canadian Human-Computer Communications Society, School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, 239--246.
[31]
Nava, A., Mazza, E., Kleinermann, F., Avis, N. J., and McClure, J. 2003. Determination of the mechanical properties of soft human tissues through aspiration experiments. In Proc. of MICCAI, 222--229.
[32]
Nealen, A., Mller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4 (Dec.), 809--836.
[33]
Ogden, R. W. 1997. Non-Linear Elastic Deformations. Courier Dover Publications.
[34]
Ottensmeyer, M. P., and Salisbury Jr., J. K. 2004. In-vivo data acquisition instrument for solid organ mechanical property measurement. In Proc. of MICCAI, 975--982.
[35]
Pai, D. K., van den Doel, K., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3d objects. In Proceedings of ACM SIGGRAPH, 87--96.
[36]
Park, S. I., and Hodgins, J. K. 2006. Capturing and animating skin deformation in human motion. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH) 25, 3.
[37]
Park, S. I., and Hodgins, J. K. 2008. Data-driven modeling of skin and muscle deformation. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH) 27, 3.
[38]
Schnur, D. S., and Zabaras, N. 1992. An inverse method for determining elastic material properties and a material interface. International Journal for Numerical Methods in Engineering 33, 10, 2039--2057.
[39]
Schoner, J. L., Lang, J., and Seidel, H.-P. 2004. Measurement-based interactive simulation of viscoelastic solids. Computer Graphics Forum (Proc. Eurographics) 23, 3, 547--556.
[40]
Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH) 24, 3, 417--425.
[41]
Sloan, P.-P. J., Rose, III, C. F., and Cohen, M. F. 2001. Shape by example. In I3D '01: Proceedings of the 2001 symposium on Interactive 3D graphics, ACM, New York, NY, USA, 135--143.
[42]
Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3.
[43]
Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. In ACM Trans. on Graphics (Proc. of ACM SIGGRAPH), vol. 24, 488--495.
[44]
Teran, J., Sifakis, E., Blemker, S., Ng Thow Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE TVCG 11, 317--328.
[45]
Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proc. of ACM SIGGRAPH 87, 205--214.
[46]
Terzopoulus, D., and Waters, K. 1993. Analysis and synthesis of facial image sequences using physical and anatomical models. IEEE Trans. PAMI 14 (June), 569--579.
[47]
Toledo, S., Chen, D., and Rotkin, V. 2003. Taucs: A library for sparse linear solvers.
[48]
Zhang, H. 2004. Discrete combinatorial laplacian operators for digital geometry processing. In Proc. of SIAM Conference on Geometric Design and Computing, Nashboro Press, 575--592.
[49]
Zordan, V., Celly, B., Chiu, B., and Dilorenzo, P. C. 2004. Breathe easy: Model and control of human respiration for computer animation. In Proc. of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 29--38.

Cited By

View all
  • (2024)Differentiable Voronoi Diagrams for Simulation of Cell-Based Mechanical SystemsACM Transactions on Graphics10.1145/365815243:4(1-11)Online publication date: 19-Jul-2024
  • (2024)Neural-Assisted Homogenization of Yarn-Level ClothACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657411(1-10)Online publication date: 13-Jul-2024
  • (2024)Elastic parameter identification of three-dimensional soft tissue based on deep neural networkJournal of the Mechanical Behavior of Biomedical Materials10.1016/j.jmbbm.2024.106542155(106542)Online publication date: Jul-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 28, Issue 3
August 2009
750 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1531326
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2009
Published in TOG Volume 28, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. data-driven graphics
  2. deformations
  3. model acquisition
  4. physically based animation and modeling

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)54
  • Downloads (Last 6 weeks)14
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Differentiable Voronoi Diagrams for Simulation of Cell-Based Mechanical SystemsACM Transactions on Graphics10.1145/365815243:4(1-11)Online publication date: 19-Jul-2024
  • (2024)Neural-Assisted Homogenization of Yarn-Level ClothACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657411(1-10)Online publication date: 13-Jul-2024
  • (2024)Elastic parameter identification of three-dimensional soft tissue based on deep neural networkJournal of the Mechanical Behavior of Biomedical Materials10.1016/j.jmbbm.2024.106542155(106542)Online publication date: Jul-2024
  • (2024)Efficient inverse-kinematics solver for precise pose reconstruction of skinned 3D modelsComputers & Graphics10.1016/j.cag.2024.104125125(104125)Online publication date: Dec-2024
  • (2024)Online elasticity estimation and material sorting using standard robot grippersThe International Journal of Advanced Manufacturing Technology10.1007/s00170-024-13678-6132:11-12(6033-6051)Online publication date: 8-May-2024
  • (2023)Motion Planning for Cutting Flexible Objects Based on Contact State RecognitionIEEJ Journal of Industry Applications10.1541/ieejjia.2200439212:4(786-792)Online publication date: 1-Jul-2023
  • (2023)Capturing Animation-Ready Isotropic Materials Using Systematic PokingACM Transactions on Graphics10.1145/361840642:6(1-27)Online publication date: 5-Dec-2023
  • (2023)Non-Newtonian ViRheometry via Similarity AnalysisACM Transactions on Graphics10.1145/361831042:6(1-16)Online publication date: 5-Dec-2023
  • (2023)Design and Fabrication of Materials with Desired Deformation BehaviorSeminal Graphics Papers: Pushing the Boundaries, Volume 210.1145/3596711.3596798(829-838)Online publication date: 1-Aug-2023
  • (2023)Non-Newtonian fluid simulation and reconstruction from monocular videosSimulation Modelling Practice and Theory10.1016/j.simpat.2022.102688123(102688)Online publication date: Feb-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media