skip to main content
research-article

A measure & conquer approach for the analysis of exact algorithms

Published:21 August 2009Publication History
Skip Abstract Section

Abstract

For more than 40 years, Branch & Reduce exponential-time backtracking algorithms have been among the most common tools used for finding exact solutions of NP-hard problems. Despite that, the way to analyze such recursive algorithms is still far from producing tight worst-case running time bounds. Motivated by this, we use an approach, that we call “Measure & Conquer”, as an attempt to step beyond such limitations. The approach is based on the careful design of a nonstandard measure of the subproblem size; this measure is then used to lower bound the progress made by the algorithm at each branching step. The idea is that a smarter measure may capture behaviors of the algorithm that a standard measure might not be able to exploit, and hence lead to a significantly better worst-case time analysis.

In order to show the potentialities of Measure & Conquer, we consider two well-studied NP-hard problems: minimum dominating set and maximum independent set. For the first problem, we consider the current best algorithm, and prove (thanks to a better measure) a much tighter running time bound for it. For the second problem, we describe a new, simple algorithm, and show that its running time is competitive with the current best time bounds, achieved with far more complicated algorithms (and standard analysis).

Our examples show that a good choice of the measure, made in the very first stages of exact algorithms design, can have a tremendous impact on the running time bounds achievable.

References

  1. Alekhnovich, M., Hirsch, E., and Itsykon, D. 2005. Exponential lower bounds for the running time of DPLL algorithms on satisfiable formulas. J. Automat. Reas. 35, 1--3, 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Beigel, R. 1999. Finding maximum independent sets in sparse and general graphs. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA). ACM, New York, 856--857. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Beigel, R., and Eppstein, D. 2005. 3-coloring in time O(1.3289n). J. Algor. 54, 2, 168--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Björklund, A., and Husfeldt, T. 2006. Inclusion-exclusion algorithms for counting set partitions. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society Press, Los Alamitos, 575--582. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bodlaender, H., Fomin, F. V., Koster, A., Kratsch, D., and Thilikos, D. 2006. Exact algorithms for tree-width. In Proceedings of the European Symposium on Algorithms (ESA). 672--683. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Brueggemann, T., and Kern, W. 2004. An improved deterministic local search algorithm for 3-SAT. Theoret. Comput. Sci. 329, 303--313. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Byskov, J. M. 2004. Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett. 32, 6, 547--556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chen, J., Kanj, I., and Jia, W. 2001. Vertex cover: Further observations and further improvements. J. Algor. 41, 280--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen, J., Kanj, I. A., and Xia, G. 2005. Labeled search trees and amortized analysis: Improved upper bounds for NP-hard problems. Algorithmica 43, 4, 245--273. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dantsin, E., Goerdt, A., Hirsch, E. A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., and Schning, U. 2002. A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoret. Comput. Science 289, 1, 69--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Davis, M., Logemann, G., and Loveland, D. 1962. A machine program for theorem-proving. Comm. ACM 5, 394--397. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Davis, M., and Putnam, H. 1960. A computing procedure for quantification theory. J. ACM 7, 201--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Downey, R. G., and Fellows, M. R. 1999. Parameterized complexity. Monographs in Computer Science. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  14. Ebenegger, C., Hammer, P. L., and de Werra, D. 1984. Pseudo Boolean functions and stability of graphs. Ann. Disc. Math. 19, 83--98.Google ScholarGoogle Scholar
  15. Eppstein, D. 2003a. Small maximal independent sets and faster exact graph coloring. J. Graph Algor. Appl. 7, 2, 131--140.Google ScholarGoogle ScholarCross RefCross Ref
  16. Eppstein, D. 2003b. The traveling salesman problem for cubic graphs. In Proceedings of the Workshop on Algorithms and Data Structures (WADS). 307--318.Google ScholarGoogle ScholarCross RefCross Ref
  17. Eppstein, D. 2006. Quasiconvex analysis of backtracking algorithms. ACM Trans. Algor. 2, 4, 492--509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Fomin, F. V., Gaspers, S., Pyatkin, A. V., and Razgon, I. 2008b. On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52, 2, 293--307. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Fomin, F., Grandoni, F., and Kratsch, D. 2005a. Measure and conquer: Domination—a case study. In Proceedings of the International Colloquium on Automata, Languages and Programming (ICALP). Lecture Notes in Computer Science, vol. 3580, Springer-Verlag, Berlin, Germany, 191--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Fomin, F., Grandoni, F., and Kratsch, D. 2005b. Some new techniques in design and analysis of exact (exponential) algorithms. Bull. Europ. Assoc. Theoret. Comput. Sci. 87, 47--77.Google ScholarGoogle Scholar
  21. Fomin, F., Grandoni, F., and Kratsch, D. 2006. Measure and conquer: A simple O(20.288n) independent set algorithm. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA). ACM, New York, 18--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Fomin, F., Grandoni, F., Pyatkin, A., and Stepanov, A. 2008a. Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications. ACM Trans. Algor. 5, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Fomin, F. V., Grandoni, F., and Kratsch, D. 2008c. Solving connected dominating set faster than 2n. Algorithmica 52, 2, 153--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Fomin, F. V., Kratsch, D., Todinca, I., and Villanger, Y. 2008d. Exact algorithms for tree-width and minimum fill-in. SIAM J. Comput. 1058--1079. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Fomin, F. V., Kratsch, D., and Woeginger, G. J. 2004. Exact (exponential) algorithms for the dominating set problem. In Proceedings of the International Workshop on Graph-Theoretic Concepts in Computer Science (WG). 199--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Fomin, F. V., and Stepanov, A. 2007. Counting minimum weighted dominating sets. In Proceedings of the International Computing and Combinatorics Conference (COCOON). 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Fürer, M. 2006. A faster algorithm for finding maximum independent sets in sparse graphs. In Proceedings of the Latin American Theoretical Informatics Symposium (LATIN). 491--501. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Gaspers, S., and Liedloff, M. 2006. A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs. In Proceedings of the International Workshop on Graph-Theoretic Concepts in Computer Science (WG). 78--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Gramm, J., Hirsch, E. A., Niedermeier, R., and Rossmanith, P. 2003. Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT. Disc. Appl. Math. 130, 2, 139--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Grandoni, F. 2004. Exact algorithms for hard graph problems. Ph.D. dissertation, Università di Roma “Tor Vergata”, Roma, Italy.Google ScholarGoogle Scholar
  31. Grandoni, F. 2006. A note on the complexity of minimum dominating set. J. Disc. Algor. 4, 2, 209--214.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Gupta, S., Raman, V., and Saurabh, S. 2006. Fast exponential algorithms for maximum regular induced subgraph problems. In Proceedings of the Foundations of Software Technology and Theoretical Computer Science (FSTTCS). 139--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Håstad, J. 1999. Clique is hard to approximate within n1−ε. Acta Math. 182, 1, 105--142.Google ScholarGoogle ScholarCross RefCross Ref
  34. Haynes, T. W., Hedetniemi, S. T., and Slater, P. J. 1998. Fundamentals of Domination in Graphs. Marcel Dekker, Inc., New York.Google ScholarGoogle Scholar
  35. Held, M., and Karp, R. M. 1962. A dynamic programming approach to sequencing problems. J. SIAM 10, 196--210.Google ScholarGoogle Scholar
  36. Hirsch, E. A. 2000a. New worst-case upper bounds for SAT. J. Automat. Reason. 24, 4, 397--420. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Hirsch, E. A. 2000b. SAT local search algorithms: worst-case study. J. Automat. Reason. 24, 1-2, 127--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Horowitz, E., and Sahni, S. 1974. Computing partitions with applications to the knapsack problem. J. ACM 21, 277--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Impagliazzo, R., Paturi, R., and Zane, F. 2001. Which problems have strongly exponetial complexity? J. Comput. Syst. Sci. 63, 512--530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Iwama, K. 2004. Worst-case upper bounds for k-SAT. Bull. Europ. Associ. Theoret. Comp. Sci. 82, 61--71.Google ScholarGoogle Scholar
  41. Iwama, K., and Tamaki, S. 2004. Improved upper bounds for 3-SAT. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA). ACM, New York, 328--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Jian, T. 1986. An O(20.304n) algorithm for solving maximum independent set problem. IEEE Trans. Comput. 35, 9, 847--851. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Kohn, S., Gottlieb, A., and Kohn, M. 1977. A generating function approach to the traveling salesman problem. In Proceedings of the Annual ACM Conference. 294--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Koivisto, M. 2006. An O(2n) algorithm for graph coloring and other partitioning problems via inclusion-exclusion. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS). 583--590. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Kojevnikov, A., and Kulikov, A. S. 2006. A new approach to proving upper bounds for MAX-2-SAT. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA). 11--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Kowalik, L. 2006. Improved edge-coloring with three colors. In Proceedings of the International Workshop on Graph-Theoretic Concepts in Computer Science (WG). 90--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Kratsch, D., and Liedloff, M. 2007. An exact algorithm for the minimum dominating clique problem. Theoret. Comput. Sci. 385, 1--3, 226--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Kullmann, O. 1999. New methods for 3-SAT decision and worst-case analysis. Theoret. Comput. Sci. 223, 1-2, 1--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Lawler, E. L. 1976. A note on the complexity of the chromatic number problem. Info. Process. Lett. 5, 3, 66--67.Google ScholarGoogle ScholarCross RefCross Ref
  50. Monien, B., and Speckenmeyer, E. 1985. Solving satisfiability in less than 2n steps. Disc. Appl. Math. 10, 3, 287--295.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Paturi, R., Pudlák, P., Saks, M. E., and Zane, F. 2005. An improved exponential-time algorithm for k-SAT. J ACM 52, 3, 337--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Pudlak, P., and Impagliazzo, R. 2000. A lower bound for DLL algorithms for k-SAT. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA) ACM, New York, 128--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Randerath, B. and Schiermeyer, I. 2004. Exact algorithms for MINIMUM DOMINATING SET. Tech. Rep. zaik-469, Zentrum für Angewandte Informatik, Köln, Germany.Google ScholarGoogle Scholar
  54. Raz, R., and Safra, S. 1997. A sub-constant error-probability low-degree test, and sub-constant error-probability PCP characterization of NP. In Proceedings of the ACM Symposium on the Theory of Computing (STOC). ACM, New York, 475--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Razgon, I. 2006a. Exact computation of maximum induced forest. In Proceedings of the Scandinavian Workshop on Algorithm Theory (SWAT). 160--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Razgon, I. 2006b. A faster solving of the maximum independent set problem for graphs with maximal degree 3. In Proceedings of the Algorithms and Complexity in Durham Workshop (ACiD). 131--142.Google ScholarGoogle Scholar
  57. Reed, B. 1996. Paths, stars and the number three. Combinatorics, Probability and Computing 5, 3, 277--295.Google ScholarGoogle ScholarCross RefCross Ref
  58. Riege, T., Rothe, J., Spakowski, H., and Yamamoto, M. 2007. An improved exact algorithm for the domatic number problem. Inf. Proc. Lett. 101, 3, 101--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Robson, J. M. 1986. Algorithms for maximum independent sets. J. Algor. 7, 3, 425--440.Google ScholarGoogle ScholarCross RefCross Ref
  60. Robson, J. M. 2001. Finding a maximum independent set in time O(2n/4). Tech. Rep. 1251-01, LaBRI, Université Bordeaux I.Google ScholarGoogle Scholar
  61. Schöning, U. 1999. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Proceeding of the IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society Press, Los Alamitos, 410--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Schöning, U. 2005. Algorithmics in exponential time. In Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS). 36--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Schroeppel, R., and Shamir, A. 1981. A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete problems. SIAM J. Comput. 10, 3, 456--464.Google ScholarGoogle ScholarCross RefCross Ref
  64. Tarjan, R., and Trojanowski, A. 1977. Finding a maximum independent set. SIAM J. Comput. 6, 3, 537--546.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. van Rooij, J., and Bodlaender, H. L. 2008. Design by measure and conquer, a faster exact algorithm for dominating set. In Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS). 657--668.Google ScholarGoogle Scholar
  66. Villanger, Y. 2006. Improved exponential-time algorithms for tree-width and minimum fill-in. In Proceedings of the Latin American Theoretical Informatics Symposium (LATIN). 800--811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. West, D. B. 1996. Introduction to Graph Theory. Prentice Hall, Englewood Cliffs.Google ScholarGoogle Scholar
  68. Williams, R. 2005. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoret. Comput. Sci. 348, 2-3, 357--365. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Woeginger, G. J. 2003. Exact algorithms for NP-hard problems: A survey. In Proceedings of the International Workshop on Combinatorial Optimization -- Eureka, You Shrink, M. Jünger, G. Reinelt, and G. Rinaldi, Eds. Lecture Notes in Computer Science. vol. 2570. Springer-Verlag, Berlin, Germany 185--207. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Zuckerman, D. 2006. Linear degree extractors and the inapproximability of max clique and chromatic number. In Proceedings of the ACM Symposium on the Theory of Computing (STOC). 681--690. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A measure & conquer approach for the analysis of exact algorithms

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Journal of the ACM
      Journal of the ACM  Volume 56, Issue 5
      August 2009
      164 pages
      ISSN:0004-5411
      EISSN:1557-735X
      DOI:10.1145/1552285
      Issue’s Table of Contents

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 August 2009
      • Accepted: 1 March 2009
      • Revised: 1 February 2009
      • Received: 1 July 2007
      Published in jacm Volume 56, Issue 5

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader