skip to main content
10.1145/1553374.1553473acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
research-article

Solution stability in linear programming relaxations: graph partitioning and unsupervised learning

Published: 14 June 2009 Publication History

Abstract

We propose a new method to quantify the solution stability of a large class of combinatorial optimization problems arising in machine learning. As practical example we apply the method to correlation clustering, clustering aggregation, modularity clustering, and relative performance significance clustering. Our method is extensively motivated by the idea of linear programming relaxations. We prove that when a relaxation is used to solve the original clustering problem, then the solution stability calculated by our method is conservative, that is, it never overestimates the solution stability of the true, unrelaxed problem. We also demonstrate how our method can be used to compute the entire path of optimal solutions as the optimization problem is increasingly perturbed. Experimentally, our method is shown to perform well on a number of benchmark problems.

References

[1]
Bansal, N., Blum, A., & Chawla, S. (2002). Correlation clustering. Foundations of Computer Science (FOCS'2002) (pp. 238--247). IEEE.
[2]
Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization. Athena Scientific, Massachusetts.
[3]
Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2008). On modularity clustering. IEEE Trans. Knowl. Data Eng, 20, 172--188.
[4]
Chopra, S., & Rao, M. R. (1993). The partition problem. Math. Program, 59, 87--115.
[5]
Demaine, E. D., Emanuel, D., Fiat, A., & Immorlica, N. (2006). Correlation clustering in general weighted graphs. Theor. Comput. Sci, 361, 172--187.
[6]
Deza, M. M., Grötschel, M., & Laurent, M. (1992). Clique-web facets for multicut polytopes. Mathematics of Operations Research, 17, 981--1000.
[7]
Deza, M. M., & Laurent, M. (1997). Geometry of cuts and metrics. Springer.
[8]
Emanuel, D., & Fiat, A. (2003). Correlation clustering -- minimizing disagreements on arbitrary weighted graphs. Eur. Symp. Alg. (pp. 208--220). Springer.
[9]
Finley, T., & Joachims, T. (2005). Supervised clustering with support vector machines. Intl. Conf. Mach. Learn. (pp. 217--224). ACM.
[10]
Gaertler, M., Görke, R., & Wagner, D. (2007). Significance-driven graph clustering. Algorithmic Aspects in Information and Management. Springer.
[11]
Gionis, A., Mannila, H., & Tsaparas, P. (2007). Clustering aggregation. Trans. on Know. Discovery from Data, 1.
[12]
Grötschel, M., & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering problem. Math. Prog., 45, 59--96.
[13]
Grötschel, M., & Wakabayashi, Y. (1990). Facets of the clique partitioning polytope. Math. Prog., 47.
[14]
Jansen, B., Jong, J., Roos, C., & Terlaky, T. (1997). Sensitivity analysis in linear programming: Just be careful! European Journal of Operational Research, 101, 15--28.
[15]
Joachims, T., & Hopcroft, J. E. (2005). Error bounds for correlation clustering. Intl. Conf. Mach. Learn. (pp. 385--392). ACM.
[16]
Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 291--307.
[17]
Kilinç-Karzan, F., Toriello, A., Ahmed, S., Nemhauser, G., & Savelsbergh, M. (2007). Approximating the stability region for binary mixed-integer programs (Technical Report). Gatech.
[18]
Newman, M. (2004). Analysis of weighted networks (Technical Report). Cornell University.
[19]
Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69.
[20]
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. American Statistical Association Journal, 66, 846--850.
[21]
Schrijver, A. (1998). Theory of linear and integer programming. John Wiley & Sons.
[22]
Wolsey, L. A. (1998). Integer programming. John Wiley.

Cited By

View all
  • (2024)DeepMulticut: Deep Learning of Multicut Problem for Neuron Segmentation From Electron Microscopy VolumeIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.340963446:12(8696-8714)Online publication date: Dec-2024
  • (2023)Efficient enumeration of the optimal solutions to the correlation clustering problemJournal of Global Optimization10.1007/s10898-023-01270-386:2(355-391)Online publication date: 16-Feb-2023
  • (2022)RAMA: A Rapid Multicut Algorithm on GPU2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52688.2022.00802(8183-8192)Online publication date: Jun-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning
June 2009
1331 pages
ISBN:9781605585161
DOI:10.1145/1553374

Sponsors

  • NSF
  • Microsoft Research: Microsoft Research
  • MITACS

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 June 2009

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

Conference

ICML '09
Sponsor:
  • Microsoft Research

Acceptance Rates

Overall Acceptance Rate 140 of 548 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)12
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)DeepMulticut: Deep Learning of Multicut Problem for Neuron Segmentation From Electron Microscopy VolumeIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.340963446:12(8696-8714)Online publication date: Dec-2024
  • (2023)Efficient enumeration of the optimal solutions to the correlation clustering problemJournal of Global Optimization10.1007/s10898-023-01270-386:2(355-391)Online publication date: 16-Feb-2023
  • (2022)RAMA: A Rapid Multicut Algorithm on GPU2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52688.2022.00802(8183-8192)Online publication date: Jun-2022
  • (2022)Enhanced Deep Learning Framework for Fine-Grained Segmentation of Fashion and ApparelIntelligent Computing10.1007/978-3-031-10464-0_3(29-44)Online publication date: 7-Jul-2022
  • (2020)A Benders Decomposition Approach to Correlation Clustering2020 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC) and Workshop on Artificial Intelligence and Machine Learning for Scientific Applications (AI4S)10.1109/MLHPCAI4S51975.2020.00009(9-16)Online publication date: Nov-2020
  • (2019)End-to-End Learning for Graph Decomposition2019 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV.2019.01019(10092-10101)Online publication date: Oct-2019
  • (2019)Solving Minimum Cost Lifted Multicut Problems by Node AgglomerationComputer Vision – ACCV 201810.1007/978-3-030-20870-7_5(74-89)Online publication date: 25-May-2019
  • (2017)Analysis and optimization of graph decompositions by lifted multicutsProceedings of the 34th International Conference on Machine Learning - Volume 7010.5555/3305381.3305540(1539-1548)Online publication date: 6-Aug-2017
  • (2017)A Message Passing Algorithm for the Minimum Cost Multicut Problem2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR.2017.530(4990-4999)Online publication date: Jul-2017
  • (2017)A Comparative Study of Local Search Algorithms for Correlation ClusteringPattern Recognition10.1007/978-3-319-66709-6_9(103-114)Online publication date: 15-Aug-2017
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media